Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Mathematik
  3. 5 Gleichungen und Ungleichungen
  4. 5.10 Wurzel-, Exponential- und Logarithmengleichungen
  5. 5.10.1 Begriffe
  6. Transzendente Gleichungen

Transzendente Gleichungen

Zu den transzendenten (nicht algebraischen) Gleichungen gehören die Exponentialgleichungen, Logarithmengleichungen und trigonometrische Gleichungen. Zu den algebraischen Gleichungen zählen auch die Wurzelgleichungen.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Zu den transzendenten (nicht algebraischen) Gleichungen gehören die Exponentialgleichungen, Logarithmengleichungen und trigonometrische Gleichungen.

  • Eine Gleichung heißt Exponentialgleichung, wenn die Variable im Exponenten auftritt.

    Beispiele:
    3 x = 81     1 ,2 x + 2   x = 24     12 1 ,8x = 224
     
  • Eine Gleichung heißt Logarithmengleichung, wenn die Variable im Argument einer Logarithmenfunktion auftritt.

    Beispiele:
    lg   x + 12 = 2   x     8   lg   ( 1 + p 100 ) = lg   2     lg   p = lg   p o − k ⋅ H ⋅ lg   e

Die Wurzelgleichungen zählen zu den algebraischen Gleichungen.

  • Westend61 - Getty Images

Lernhelfer (Duden Learnattack GmbH): "Transzendente Gleichungen." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/schuelerlexikon/mathematik/artikel/transzendente-gleichungen (Abgerufen: 20. May 2025, 05:27 UTC)

Suche nach passenden Schlagwörtern

  • Wurzelgleichung
  • Exponent
  • Gleichung
  • Exponentialgleichung
  • Logarithmengleichung
  • transzendente Gleichung
  • Radikand
  • Argument
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Grafisches Lösen von Gleichungen

Gleichungen, für die exakte Lösungsverfahren nicht bekannt oder zu zeitaufwendig sind, lassen sich oft mit hinreichender Genauigkeit grafisch lösen.

Dabei geht man von der zu lösenden Bestimmungsgleichung zur entsprechenden Funktionsgleichung über, stellt (unter Verwendung eines Taschenrechners) eine Wertetabelle auf und zeichnet den Graphen der Funktion.

Die Abszissen der Schnittpunkte des Funktionsgraphen mit der x-Achse, also die Nullstellen, sind die Lösungen der Gleichung. Man liest sie näherungsweise ab. Die Genauigkeit beim Ablesen kann verbessert werden, wenn die Funktion in einem immer engeren Intervall um die Nullstelle herum dargestellt wird.

Das Vorgehen beim grafischen Lösen von Gleichungen soll im Folgenden durch ein Beispiel verdeutlicht werden.

Lösen von Anwendungsaufgaben mithilfe von Exponentialgleichungen

Eine Reihe von inner- und außermathematischen Anwendungsaufgaben führt auf das Lösen von Exponentialgleichungen.
Als Beispiele werden Aufgaben zur Zinseszinsrechnung, zum atmosphärischen Luftdruck sowie zum Entladen eines Kondensators angegeben.

Logarithmusgleichungen

Eine Gleichung nennt man Logarithmengleichung, wenn mindestens eine freie Variable (Unbekannte) als Logarithmus (zu einer beliebigen Basis a) auftritt.

Potenzfunktionen, allgemein

Funktionen mit Gleichungen
der Form y = x n     ( x   ∈ ℝ ,     n ∈   ℤ )
heißen Potenzfunktionen.
Es ist zweckmäßig, eine Einteilung der Potenzfunktionen in Abhängigkeit vom Exponenten n vorzunehmen.

Gerade Potenzfunktionen

Funktionen mit Gleichungen der Form y = x n     ( x   ∈ ℝ ,     n ∈   ℤ ) heißen Potenzfunktionen.
Ist der Exponent n in y = f ( x ) = x n eine gerade Zahl (n = 2k mit k ∈ ℤ ), so liegen gerade Funktionen vor.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025