Direkt zum Inhalt

7 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Wurzeln, Rechnen

a = c n (gesprochen: a ist gleich n-te Wurzel aus c)
Dabei heißen n der Wurzelexponent, c der Radikand und a der Wurzelwert.
Im Bereich der reellen Zahlen existiert die n-te Wurzel aus c stets, wenn c eine nichtnegative reelle Zahl und n eine natürliche Zahl ( n > 1 ) ist.
Wurzeln aus negativen Zahlen existieren im Bereich der reellen Zahlen nicht.

Artikel lesen

Wurzeln, Wissenswertes und Historisches

Eine Umkehrung des Potenzierens ist das Radizieren (Wurzelziehen).
Es ist die Frage nach dem Wert von a zu beantworten, wenn in der Potenz a b = c die Werte von b und c bekannt sind.
a n = c     ( a ∈ ℝ ;   a ≥ 0   ;   n ∈ ℕ ;   n ≠ 1;   n ≠ 0;   c ≥ 0 ) ist gleichbedeutend mit
a = c n (gesprochen: a ist gleich n-te Wurzel aus c).
Dabei heißen n der Wurzelexponent, c der Radikand und a der Wurzelwert.

Artikel lesen

Wurzelgleichungen

Eine Gleichung heißt Wurzelgleichung, wenn die Variable im Radikanden auftritt.
Wenn es sich beim Lösen von Gleichungen um Quadratwurzeln handelt, ist es oftmals möglich, diese Wurzeln durch einmaliges oder mehrfaches Quadrieren zu beseitigen. Allerdings muss das Ergebnis unbedingt überprüft werden, da das Quadrieren keine äquivalente Umformung ist.

Artikel lesen

Diskriminante

Die Lösungsformel für die Normalform der quadratischen Gleichung x 2 + p   x + q = 0 lautet:
x 1;   2 = − p 2 ±   ( p 2 ) 2 −   q
Der Radikand ( p 2 ) 2 − q heißt Diskriminante und wird mit D abgekürzt.
Vom Wert des Radikanden in der Lösungsformel hängt es ab, ob die quadratische Gleichung zwei, eine oder keine reelle Lösung hat.

Artikel lesen

Transzendente Gleichungen

Zu den transzendenten (nicht algebraischen) Gleichungen gehören die Exponentialgleichungen, Logarithmengleichungen und trigonometrische Gleichungen. Zu den algebraischen Gleichungen zählen auch die Wurzelgleichungen.

Artikel lesen

Allgemeine Wurzelfunktionen

Funktionen mit Gleichungen der Form   y = f ( x ) = x m n   ( x ≥ 0 ;       m ,   n ∈ ℕ ;     m ≥ 1 ;     n ≥ 2 )
heißen Wurzelfunktionen.
Wurzelfunktionen sind spezielle Potenzfunktionen, wenn man als Exponenten nicht nur ganze Zahlen, sondern auch gebrochene Zahlen zulässt:
  x m n = x m n   ( x ≥ 0 ;     m ,   n ∈ ℕ ;     m ≥ 1 ;     n ≥ 2 )
Als Wurzelfunktionen bezeichnet man im weiteren Sinne ebenfalls alle Funktionen, in deren Funktionsterm das Argument x als Bestandteil eines Wurzelradikanden auftritt, z. B. also:
  f ( x ) = x − 2 4 ,     g ( x ) = 5 4 − x 3

Artikel lesen

Spezielle Wurzelfunktion

Besonders häufig treten Funktionen mit Gleichungen der Form y = f ( x ) = x 2 = x auf. Die Funktion f ( x ) = x ist die Umkehrfunktion (inverse Funktion) zu y = g ( x ) = x 2 , jedoch nur für x ≥ 0 , da die Gleichung g ( x ) = x 2 keine umkehrbar eindeutige (eineindeutige) Zuordnung beschreibt.

7 Suchergebnisse

Fächer
  • Mathematik (7)
Klassen
  • 5. Klasse (7)
  • 6. Klasse (7)
  • 7. Klasse (7)
  • 8. Klasse (7)
  • 9. Klasse (7)
  • 10. Klasse (7)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025