Allgemeine Wurzelfunktionen

Funktionen mit Gleichungen der Form
y = f ( x ) = x m n ( x 0 ; m , n ; m 1 ; n 2 )
heißen Wurzelfunktionen.

Wurzelfunktionen sind spezielle Potenzfunktionen, wenn man als Exponenten nicht nur ganze Zahlen, sondern auch gebrochene Zahlen zulässt:
x m n = x m n ( x 0 ; m , n ; m 1 ; n 2 )
Anmerkung: Verwendet man die Bruchpotenzschreibweise, so muss gefordert werden, dass Bruchpotenzen nur für positive Basen erklärt sind.

Als Wurzelfunktionen bezeichnet man im weiteren Sinne ebenfalls alle Funktionen, in deren Funktionsterm das Argument x als Bestandteil eines Wurzelradikanden auftritt,
z. B. also f ( x ) = x 2 4 , g ( x ) = 5 4 x 3 .

Besonders häufig treten Funktionen mit Gleichungen der Form y = f ( x ) = x 2 = x auf. Die Funktion f ( x ) = x ist die Umkehrfunktion (inverse Funktion) zu y = g ( x ) = x 2 , jedoch nur für x 0 , da die Gleichung g ( x ) = x 2 keine umkehrbar eindeutige (eineindeutige) Zuordnung beschreibt.

a ist die n-te Wurzel aus c

a ist die n-te Wurzel aus c

Anmerkung:
f ( x ) = x ist nicht äquivalent zu [ f ( x ) ] 2 = x , da Quadrieren keine äquivalente Umformung darstellt. Zieht man auf beiden Seiten die Wurzel, dann erhält man nach der Quadratwurzeldefinition | f ( x ) | = x mit folgender Fallunterscheidung:
(1) f 1 ( x ) = x , wenn f ( x ) 0
(2) f 2 ( x ) = x , wenn f ( x ) 0
f 1 ( x ) = x ist die Umkehrung von g 1 ( x ) = x 2 mit x 0 ,
f 2 ( x ) = x ist die Umkehrung von g 2 ( x ) = x 2 mit x 0 (Bild 2).

Umkehrung der quadratischen Funktion

Umkehrung der quadratischen Funktion

Für Wurzelfunktionen y = f ( x ) = x n ( x 0 ; n ; n 2 )
gelten die Eigenschaften aus der Tabelle (Bild 3).

Eigenschaften der Wurzelfunktion

Eigenschaften der Wurzelfunktion

Lexikon Share
Mathe Note verbessern?
 

Kostenlos bei Duden Learnattack registrieren und ALLES 48 Stunden testen.

Kein Vertrag. Keine Kosten.

  • 40.000 Lern-Inhalte in Mathe, Deutsch und 7 weiteren Fächern
  • Hausaufgabenhilfe per WhatsApp
  • Original Klassenarbeiten mit Lösungen
  • Deine eigene Lern-Statistik
  • Kostenfreie Basismitgliedschaft
Beliebte Artikel
alle anzeigen

Einloggen