Direkt zum Inhalt

47 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Angst kann beherrscht werden

Es gibt wohl kaum einen Menschen, der nicht schon einmal vor irgendetwas Angst gezeigt hat. Angst kann vielfältig auftreten: Angst vor Prüfungen, Angst vor Krankheit, Angst vor Gewitter, Angst vor Einsamkeit, Angst vor Versagen, Angst vor Zuspätkommen sind nur einige Beispiele aus dem breiten Erscheinungsbild menschlicher Ängste.
Beim Erleben von Angst handelt es sich um einen emotionalen Zustand des Organismus, der ursprünglich eine warnende und Aktivitäten auslösende Funktion inne hat. Gerade bei Tieren dient „Angst“ durch die sofortige Aktivierung der Fluchtbereitschaft dem Ausweichen einer Bedrohung. Beim Menschen können vor allem neue, unübersehbare Situationen und daraus resultierende Unsicherheiten bei der Verhaltensanpassung zur Auslösung ängstlicher Emotionen führen. Geht die Angst nach Beendigung der Situation nicht zurück, spricht man von Phobien oder Traumata. Die Überwindung solcher Angstzustände wird u.a. durch das längerfristige Trainieren von Verhaltensstrategien erreicht, die auf Erfahrungen mit ähnlichen Situationen aufbauen. Aber auch gute Kenntnisse über die eigene Person und die sich verändernden Umweltbedingungen und Anforderungen (Aufklärung) können die Angst minimieren.

Artikel lesen

Struktur, Analyse

Unter der Textstruktur versteht man die Anordnung der Informationen, Meinungen, Kommentare, Zitate usw., sowie die Entfaltung des Themas im Text.

Artikel lesen

Texte, Unterscheidung

Texte verfügen über vielfältige Merkmale, die man zur Unterscheidung und Einordnung in verschiedene Gruppen heranziehen kann.

Artikel lesen

Text, Medienbegriff

Jeder von uns weiß, wie ein gedruckter Text aussieht: Er besteht aus Wörtern und Satzzeichen, die zu vollständigen Sätzen zusammengefügt sind. Es können auch andere, sogenannte nicht sprachliche Zeichen, wie Symbole, Grafiken oder Zeichnungen, verwendet werden.
Die Sätze werden durch sprachliche Mittel, z. B. Konjunktionen und inhaltliche Vernetzung, z. B. durch die Darstellung von Ursache-Wirkung-Beziehungen, miteinander zu einem in sich geschlossenen Text verknüpft.

Artikel lesen

Exponentialfunktionen

Funktionen mit Gleichungen der Form
  y = f ( x ) = a x   ( a ∈ ℝ ;       a > 0 ;       a ≠ 1 )
heißen Exponentialfunktionen. Ihr Definitionsbereich ist die Menge ℝ der reellen Zahlen.

Artikel lesen

Folgen, Allgemeines

Eine Funktion, deren Defitionsbereich die Menge der natürlichen Zahlen (oder eine Teilmenge davon) ist und die eine Teilmenge der reellen Zahlen als Wertebereich besitzt, wird (reelle) Zahlenfolge genannt.
Unter der n-ten Partialsumme einer s n einer Zahlenfolge ( a n ) versteht man die Summe der Folgenglieder von a 1 bis a n .

Artikel lesen

Gerade und ungerade Funktionen

Eine Funktion f heißt gerade Funktion, wenn mit x auch (–x) zu ihrem Definitionsbereich gehört und für alle Argumente x gilt:
  f ( −   x ) = f ( x )
Eine Funktion f heißt ungerade Funktion, wenn mit x auch (–-x) zu ihrem Definitionsbereich gehört und für alle Argumente x gilt:
  f ( −   x ) = −   f ( x )

Artikel lesen

Betragsfunktion

Die Betragsfunktion ist eine stückweise erklärte stetige Funktion. Sie ist folgendermaßen definiert:
  f   ( x ) = {     x   für  x ≥ 0 − x   für  x < 0

Artikel lesen

Potenzfunktionen, allgemein

Funktionen mit Gleichungen
der Form y = x n     ( x   ∈ ℝ ,     n ∈   ℤ )
heißen Potenzfunktionen.
Es ist zweckmäßig, eine Einteilung der Potenzfunktionen in Abhängigkeit vom Exponenten n vorzunehmen.

Artikel lesen

Gerade Potenzfunktionen

Funktionen mit Gleichungen der Form y = x n     ( x   ∈ ℝ ,     n ∈   ℤ ) heißen Potenzfunktionen.
Ist der Exponent n in y = f ( x ) = x n eine gerade Zahl (n = 2k mit k ∈ ℤ ), so liegen gerade Funktionen vor.

Artikel lesen

Ungerade Potenzfunktionen

Funktionen mit Gleichungen der Form y = x n     ( x   ∈ ℝ ,     n ∈   ℤ ) heißen Potenzfunktionen.
Ist der Exponent n in y = f ( x ) = x n eine ungerade Zahl (n = 2k + 1 mit k ∈ ℤ ), so liegen ungerade Funktionen vor.

Artikel lesen

Indirekte Proportionalität

Bewegt sich ein Fahrzeug mit gleichbleibender Geschwindigkeit längs eines geradlinigen Weges von 9 km Länge, so hängt nach den Gesetzen der Physik die hierfür benötigt Zeit t von der Größe der Geschwindigkeit v ab.
Es gilt: t = 9 v
(wobei hier v in km/min und t dann in Minuten gemessen sei)
Durch die Gleichung t = 9 v wird jedem Wert von v ( ≠ 0 ) eindeutig ein Wert von t zugeordnet – es handelt sich bei diesem Zusammenhang also um eine Funktion t = f(v).

Artikel lesen

Präpositionen, Zeit

Präpositionen haben die Funktion, das örtliche und zeitliche Verhältnis von Dingen und Personen zueinander zu bezeichnen. Sie ändern ihre Form nicht und stehen im Allgemeinen vor Substantiven (prae-position).

Artikel lesen

Funktionen des Substantivs

Das Substantiv übernimmt eine Funktion im Satz.
Durch den Kasus des Substantivs wird angezeigt, welche Funktion übernommen wird.

Artikel lesen

Logarithmusfunktionen

Funktionen mit Gleichungen der Form y = f ( x ) = log a   x   ( a ,   x ∈ ℝ ;       a ,   x > 0;       a ≠ 1 )
heißen Logarithmusfunktionen.
Von besonderer Bedeutung sind die Logarithmusfunktionen mit den Basen 10 und 2 sowie der eulerschen Zahl e.

Artikel lesen

Nullstellen

Jede Zahl x aus dem Definitionsbereich einer Funktion f, für die
f(x) = 0 gilt, nennt man Nullstelle dieser Funktion.

Artikel lesen

Funktionenscharen

In Funktionsgleichungen können Parameter in additiver und multiplikativer Verknüpfung mit Funktionstermen bzw. mit der Funktionsvariablen auftreten. Aus einer Funktionsgleichung y = f   ( x ) entstehen so z. B. die Gleichungen y = f   ( x ) + c , y = f   ( x + d ) , y = a ⋅ f   ( x ) oder y = f   ( b ⋅ x ) .
Diese Parameter haben Einfluss auf Eigenschaften und Verlauf der Graphen der Funktion.

Artikel lesen

Funktionen, y = mx

Jeder direkt proportionale Zusammenhang zwischen zwei Größen y und x kann durch eine spezielle lineare Funktion mit der Gleichung
  y = ( x ) = m x + n   ( m ≠ 0 )
beschrieben werden.
Definitionsbereich und Wertebereich (Wertevorrat) von f ist die Menge der reellen Zahlen ℝ . Der Graph von f ist eine Gerade, die durch den Koordinatenursprung verläuft

Artikel lesen

Funktionsbegriff

Der Funktionsbegriff ist von zentraler Bedeutung für die gesamte Mathematik und spielt auch bei Anwendungen der Mathematik in Naturwissenschaft, Technik, Wirtschaft und Gesellschaft eine wichtige Rolle. Seine Entwicklung zur heute gebräuchlichen Form hat Jahrhunderte gedauert. Die Namen bekannter Mathematiker sind mit diesem Prozess eng verbunden: LEIBNIZ verwendete 1692 erstmals das Wort Funktion, von JOHANN BERNOULLI stammt die erste Definition und auch EULER trug zur Präzisierung bei.
Unter einer Funktion f versteht man eine eindeutige Zuordnung (Abbildung), die jedem Element x aus einer Menge D eindeutig ein Element y aus einer Menge W zuordnet. D heißt der Definitionsbereich, W der Wertebereich der Funktion f. Man nennt x ∈ D ein Argument, das zugeordnete Element y ∈ W den Funktionswert von x bei der Funktion f. Als Kurzschreibweise gibt man die Funktionsgleichung u. a. in der Form y = f   ( x ) an.

Artikel lesen

Funktionsgleichung, Ermitteln

Eine lineare Funktion ist durch zwei ihrer Wertepaare bzw. durch zwei Punkte ihres Graphen eindeutig bestimmt.
Ist eines des gegebenen Wertepaare das Paar (0; 0), verläuft der Graph der Funktion also durch den Koordinatenursprung, so ist das Ermitteln der Gleichung besonders einfach.

Artikel lesen

Quadratische Funktionen, Nullstellen

Wir betrachten zunächst quadratische Funktionen der Form y = f ( x ) = a x 2 + b x + c .
Man erhält y = f ( x ) = x 2 + b x + c bzw. durch Umbenennung
y = f ( x ) = x 2 + p x + q ,     p ,   q ∈ ℝ .
Um den Zusammenhang zwischen den reellen Zahlen p, q und den Nullstellen der jeweiligen quadratischen Funktionen bzw. den Schnittpunkten ihrer Graphen mit der x-Achse zu erkennen, ist es zweckmäßig, eine Fallunterscheidung durchzuführen.

Artikel lesen

Winkelfunktionen, Graphen und Eigenschaften

Graphen von Winkelfunktionen kann man auf die bekannte Weise unter Verwendung einer Wertetabelle zeichnen.
Es ist allerdings auch möglich, ausgehend von der Definition dieser Funktionen am Einheitskreis die zu einem Winkel als Abszisse eines Graphenpunktes gehörende Ordinate sofort aus der Zeichnung zu entnehmen. Gestützt auf diesen Weg der Konstruktion der Funktionsgraphen lassen sich einige wichtige Eigenschaften der Winkelfunktionen ermitteln.

Artikel lesen

Allgemeine Wurzelfunktionen

Funktionen mit Gleichungen der Form   y = f ( x ) = x m n   ( x ≥ 0 ;       m ,   n ∈ ℕ ;     m ≥ 1 ;     n ≥ 2 )
heißen Wurzelfunktionen.
Wurzelfunktionen sind spezielle Potenzfunktionen, wenn man als Exponenten nicht nur ganze Zahlen, sondern auch gebrochene Zahlen zulässt:
  x m n = x m n   ( x ≥ 0 ;     m ,   n ∈ ℕ ;     m ≥ 1 ;     n ≥ 2 )
Als Wurzelfunktionen bezeichnet man im weiteren Sinne ebenfalls alle Funktionen, in deren Funktionsterm das Argument x als Bestandteil eines Wurzelradikanden auftritt, z. B. also:
  f ( x ) = x − 2 4 ,     g ( x ) = 5 4 − x 3

Artikel lesen

Spezielle Wurzelfunktion

Besonders häufig treten Funktionen mit Gleichungen der Form y = f ( x ) = x 2 = x auf. Die Funktion f ( x ) = x ist die Umkehrfunktion (inverse Funktion) zu y = g ( x ) = x 2 , jedoch nur für x ≥ 0 , da die Gleichung g ( x ) = x 2 keine umkehrbar eindeutige (eineindeutige) Zuordnung beschreibt.

Artikel lesen

Bestimmtes Integral als Funktion der oberen Grenze

Der Wert eines bestimmten Integrals hängt von der Integrandenfunktion und den Integrationsgrenzen ab. Bei gegebener Integrandenfunktion können sich Untersuchungen am bestimmten Integral auf die Überprüfung des Einflusses von Veränderungen der Integrationsgrenzen beschränken.

Seitennummerierung

  • Aktuelle Seite 1
  • Seite 2
  • Next Page

47 Suchergebnisse

Fächer
  • Biologie (3)
  • Deutsch (1)
  • Englisch (6)
  • Kunst (6)
  • Mathematik (29)
  • Musik (2)
Klassen
  • 5. Klasse (36)
  • 6. Klasse (36)
  • 7. Klasse (36)
  • 8. Klasse (36)
  • 9. Klasse (36)
  • 10. Klasse (36)
  • Oberstufe/Abitur (19)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025