Direkt zum Inhalt

4 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Funktionen, y = mx + n

Eine Funktion f mit einer Gleichung der Form
  y = f ( x ) = m x + n   ( m ,   n ∈ ℝ )
oder einer Gleichung, die durch äquivalentes Umformen in diese Form überführt werden kann, heißt lineare Funktion.
Für lineare Funktionen ist der Definitionsbereich im Allgemeinen die Menge der reellen Zahlen (so nicht das mathematische oder das entsprechenden Anwendungsproblem einen Einschränkung verlangt), was dann auch für den Wertebereich ( m ,   n ≠ 0 ) gilt. Die Zahlen m und n sind Parameter.

Artikel lesen

Integrationsregeln

Für das Aufsuchen von Stammfunktionen (Ermitteln unbestimmter Integrale) helfen die Kenntnisse aus der Differenzialrechnung (Bilden von Ableitungsfunktionen). Diese reichen aber oftmals nicht aus – es bedarf der Verwendung spezieller Integrationsregeln.

Von grundlegender Bedeutung sind die Potenzregel, die Faktor- und die Summenregel. Für das Ermitteln komplizierterer unbestimmter Integrale stehen weitere Integrationsverfahren wie z.B. die Integration durch lineare und nichtlineare Substitution, das Verfahren der partiellen Integration oder der Integration durch Partialbruchzerlegung zur Verfügung.

Formelsammlungen enthalten überdies oftmals Tafeln mit Integralen schwierig zu berechnender Funktionen. Eine große Hilfe bieten schließlich moderne Rechengeräte mit Computeralgebrasystemen (CAS).

Artikel lesen

Stammfunktionen

Eine Grundaufgabe der Differenzialrechnung besteht im Ermitteln der Ableitungsfunktion f‘ zu einer gegebenen Funktion f.
Wird diese Aufgabenstellung umgekehrt, d.h., sucht man zu einer gegebenen Funktion f eine Funktion F, deren Ableitungsfunktion F‘ gleich f ist, so kommt man zur Grundaufgabe der Integralrechnung und zum Begriff der Stammfunktion.     

Artikel lesen

Konstantenregel der Differenzialrechnung

Wir vermuten das Folgende: Eine konstante Funktion f ( x ) = c       ( c ∈ ℝ ,       a b e r       f e s t ) besitzt für alle x ∈ ℝ die Ableitung f ′ ( x ) = 0.

4 Suchergebnisse

Fächer
  • Mathematik (4)
Klassen
  • 5. Klasse (1)
  • 6. Klasse (1)
  • 7. Klasse (1)
  • 8. Klasse (1)
  • 9. Klasse (1)
  • 10. Klasse (1)
  • Oberstufe/Abitur (3)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025