Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Mathematik Abitur
  3. 7 Integralrechnung
  4. 7.1 Das unbestimmte Integral
  5. 7.1.1 Die Begriffe Stammfunktion und unbestimmtes Integral
  6. Stammfunktionen

Stammfunktionen

Eine Grundaufgabe der Differenzialrechnung besteht im Ermitteln der Ableitungsfunktion f‘ zu einer gegebenen Funktion f.
Wird diese Aufgabenstellung umgekehrt, d.h., sucht man zu einer gegebenen Funktion f eine Funktion F, deren Ableitungsfunktion F‘ gleich f ist, so kommt man zur Grundaufgabe der Integralrechnung und zum Begriff der Stammfunktion.     

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.
  • Definition: Eine Funktion F heißt Stammfunktion einer Funktion f, wenn die Funktionen f und F einen gemeinsamen Definitionsbereich D f ( = D F ) besitzen und für alle x ∈ D f gilt:
    F ' ( x ) = f ( x )   

Für die weiteren Überlegungen ist die folgende Aussage bedeutsam:

  • f ist eine konstante Funktion genau dann, wenn für jedes x gilt: f ' ( x ) = 0

Beweis:
Die Aussage besteht aus zwei Teilaussagen:
a) Wenn f eine konstante Funktion ist, so gilt f ' ( x ) = 0 für jedes x.
b) Wenn f ' ( x ) = 0 für jedes x gilt, so ist f eine konstante Funktion.

Die Gültigkeit von a) ergibt sich unmittelbar aus der Konstantenregel der Differenzialrechnung. Es muss deshalb nur noch Teilaussage b) bewiesen werden:

Voraussetzung: Für jedes x gelte f ' ( x ) = 0 .
Behauptung: f ist eine konstante Funktion.

Es wird gezeigt, dass unter der angegebenen Voraussetzung die Funktionswerte von f an beliebigen Stellen a und b übereinstimmen, d.h., dass stets f ( a ) = f ( b ) gilt, wie man a und b auch wählt.

Wir wenden für den Nachweis den Mittelwertsatz der Differenzialrechnung an. Ist f eine im Intervall ]   a   ;   b   [ differenzierbare Funktion, dann existiert mindestens eine Stelle c zwischen a und b, so dass gilt:
f ( b ) − f ( a ) b − a = f ' ( c )             ( c ∈ ]   a   ;     b   [ )

Durch Multiplikation mit (b - a) erhält man hieraus f ( b ) − f ( a ) = f ' ( c ) ( b − a ) .
Da nach Voraussetzung f ' an jeder Stelle den Wert Null hat, ist auch f ' ( c ) = 0 .
Damit gilt f (   b ) − f ( a ) = 0 , woraus f ( a ) = f ( b ) folgt.

Da aber a und b beliebig gewählt wurden, stimmen die Funktionswerte an allen Stellen überein, d.h., f ist eine konstante Funktion.
w.z.b.w.

Wenn es zu einer Funktion f eine Stammfunktion F gibt, so existieren unendlich viele weitere Stammfunktionen, die sich nur um eine additive Konstante unterscheiden.

Stammfunktionen einer Funktion

  • Es sei F 1 eine Stammfunktion von f in D. F 2 ist genau dann eine Stammfunktion von f, wenn es eine Zahl C ( C ∈ ℝ ) gibt, so dass F 2 ( x ) = F 1 ( x ) + C für alle x ∈ D gilt.

Beweis:
Weil es sich bei dem vorliegenden Satz um eine Äquivalenzaussage handelt, müssen wir den Beweis „in beiden Richtungen“ führen.

a) Es sei F 2 ( x ) = F 1 ( x ) + C (für alle x ∈ D ).
Dann ist F 2 differenzierbar und es gilt F 2 ' ( x ) = F 1 ' ( x ) .
Da nach Voraussetzung F 1 ' ( x ) = f ( x ) , folgt F 2 ' ( x ) = f ( x ) , d.h., F 2 ist ebenfalls eine Stammfunktion von f.

b) Es sei F 2 Stammfunktion von f. Dann gilt F 2 ' ( x ) = f ( x ) .
Da nach Voraussetzung auch F 1 ' ( x ) = f ( x ) ist, folgt F 2 ' ( x ) = F 1 ' ( x ) bzw. F 2 ' ( x ) − F 1 ' ( x ) = 0 .
Das heißt, die Differenzenfunktion F 2 ( x ) − F 1 ( x ) hat die Ableitung 0 und muss daher eine konstante Funktion sein: F 2 ( x )     −     F 1 ( x ) = C bzw. F 2 ( x ) = F 1 ( x ) + C
w. z. b. w.

Für die Menge aller Stammfunktionen einer gegebenen Funktion f wird ein neuer Begriff eingeführt.

  • Definition: Die Menge aller Stammfunktionen einer Funktion f heißt unbestimmtes Integral von f. Man schreibt:
    ∫ f ( x )   d x = { F ( x )     |     F ' ( x ) = f ( x ) }

Will man die Mengenschreibweise vermeiden, kann man auch nur mit einem Repräsentanten arbeiten:
∫ f ( x )   d x = F ( x ) + C                                               (   F ' ( x ) = f ( x )   ,     C ∈ ℝ )
Dabei bezeichnet man
f(x) als Integrandenfunktion – kurz: Integrand,
x als Integrationsvariable,
C als Integrationskonstante,
dx als Differenzial des unbestimmten Integrals
∫ f ( x )   d x
(gelesen: Integral über f von x dx).

Beim Ermitteln unbestimmter Integrale darf die Integrationskonstanten nicht einfach weggelassen werden, da dies zu Trugschlüssen führen kann.

Beispiel

Schreibt man
∫ sin   x     ⋅ cos   x     d x = 1 2   sin 2 x                                     ( d a         d     sin 2 x d x = 2   sin   x     ⋅ cos   x ) b z w . ∫ sin   x     ⋅ cos   x     d x = − 1 2   cos 2 x                             ( d a         d     cos 2 x d x = −   2   sin   x     ⋅ cos   x )
so ergäbe sich die falsche Aussage   sin 2 x = −   cos 2 x                   b z w .                   sin 2 x     +     cos 2 x = 0 .

Lernhelfer (Duden Learnattack GmbH): "Stammfunktionen." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/schuelerlexikon/mathematik-abitur/artikel/stammfunktionen (Abgerufen: 19. May 2025, 20:13 UTC)

Suche nach passenden Schlagwörtern

  • Integrationsvariable
  • Integrandenfunktion
  • konstante Funktion
  • Konstantenregel
  • Integrationskonstante
  • Stammfunktion
  • Ableitungsfunktion
  • Differenzial
  • Mittelwertsatz der Differenzialrechnung
  • unbestimmtes Integral
  • Integrand
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Beweise unter Verwendung von Vektoren

Sätze der ebenen Geometrie lassen sich mithilfe von Vektoren mitunter sehr knapp und übersichtlich beweisen. Auf der Grundlage entsprechender Figuren, in denen die relevanten Stücke vektoriell gekennzeichnet werden, formuliert man Voraussetzungen und Behauptung jeweils mittels Vektoren und versucht, durch logische Schlüsse unter Verwendung der Rechengesetze für Vektoren den Beweis zu führen.
Bereits Addition und Vervielfachung von Vektoren können dabei sehr hilfreich sein, die Hinzunahme multiplikativer Verknüpfungen und deren Eigenschaften erschließen weitere Anwendungsmöglichkeiten. Die folgenden Beispiele illustrieren diese Vorgehensweise.

Die elektrische Spannung

Neben vielen anderen Anwendungen ist die Mathematik in der Physik für die Definition physikalischer Größen bedeutsam. Im Folgenden wird die Arbeit im radialsymmetrischen elektrischen Feld berechnet, woraus dann weitere Größen gewonnen werden.

Flächenberechnung durch Integralrechnung

Aus der geometrischen Deutung des bestimmten Integrals resultiert die Flächenberechnung als grundlegende Anwendung der Integralrechnung.
Dabei erfordern Unterschiede in Form und Lage der jeweiligen Flächen im Koordinatensystem spezifische Vorgehensweisen.
Man hat zu unterscheiden zwischen Flächen unter Funktionsgraphen, die im betrachteten Intervall

  • ausschließlich oberhalb der x-Achse,
  • ausschließlich unterhalb der x-Achse oder
  • oberhalb und unterhalb der x-Achse liegen, sowie
  • Flächen, die zwischen zwei Funktionsgraphen liegen.

Flächeninhaltsberechnungen

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Mathematik - Flächeninhaltsberechnungen".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Hauptsatz der Differenzial- und Integralrechnung

Der Hauptsatz der Differenzial- und Integralrechnung wird nach den Begründern der Infinitesimalrechnung häufig auch als Formel nach NEWTON-LEIBNIZ bezeichnet.
Er stellt den Zusammenhang zwischen der Differenzial- und Integralrechnung her und verbindet zwei Sachverhalte miteinander, denen völlig unterschiedliche Probleme zugrunde liegen.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025