Direkt zum Inhalt

7 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Pierre Simon de Laplace

* 28. März 1749 Beaumont-en-Auge
† 5. März 1827 Paris

PIERRE SIMON DE LAPLACE lieferte bedeutende Beiträge auf den Gebieten der Wahrscheinlichkeitsrechnung, der höheren Analysis sowie der Himmelsmechanik.
So fasste er beispielsweise in seinem 1812 erschienenen Werk „Théorie analytique des probabilités“ das damalige Wissen zur Wahrscheinlichkeitsrechnung zusammen.

Artikel lesen

Siméon Denis Poisson

* 21. Juni 1781 Pithiviers (Dep. Loiret)
† 25. April 1840 Paris

SIMÉON DENIS POISSON war ein äußerst vielseitiger Wissenschaftler. Seine Arbeitsgebiete umfassten nahezu alle Teilgebiete der Physik sowie in der Mathematik neben Infinitesimalrechnung und Differenzialgeometrie vor allem die Wahrscheinlichkeitsrechnung.
Nicht wenige Größen und Gesetze in Physik und Mathematik tragen heute seinen Namen.

Artikel lesen

Johann Bernoulli

JOHANN BERNOULLI, Schweizer Mathematiker
* 6. August 1667 Basel
† 1. Januar 1748 Basel

JOHANN BERNOULLI trug wesentlich zur Herausbildung moderner Auffassungen zur Infinitesimalrechnung und deren Verbreitung in Europa bei. Gemeinsam mit seinem älteren Bruder JAKOB und in Korrespondenz mit GOTTFRIED WILHELM LEIBNIZ entwickelte er den sogenannten Leibnizschen Calculus weiter, der Begriff Integralrechnung geht auf ihn zurück.
Intensiv beschäftigte er sich mit Anwendungen der Infinitesimalrechung auf physikalische und technische Probleme, zum Beispiel untersuchte er das Verhalten strömender Flüssigkeiten.

Artikel lesen

Augustin Louis Cauchy

* 21. August 1789 Paris
† 23. Mai 1857 Sceaux bei Paris

AUGUSTIN LOUIS CAUCHY war vorrangig auf dem Gebiet der Analysis tätig. Er entwickelte die von LEIBNIZ und NEWTON aufgestellten Grundlagen weiter, indem er sie als zusammenhängende Theorie formulierte und entsprechende Aussagen bewies. Zudem begründete er die Funktionentheorie einer komplexen Variablen.

Artikel lesen

Geschichte der Analysis

Die Analysis (oder auch Infinitesimalrechnung) beschäftigt sich im Wesentlichen mit der Differenzial- und Integralrechnung.
Ausgangspunkt für die Integralrechnung war das schon in der Antike betrachtete Problem der Bestimmung des Inhalts von Flächen und Körpern, wie etwa von Rotationskörpern.
Die Differenzialrechnung hat ihre Wurzeln dagegen im Tangentenproblem, mit dem sich Mathematiker im 17. Jahrhundert intensiver beschäftigten.
Im 18. Jahrhundert wurde der Zusammenhang zwischen dem Differenzieren und Integrieren erkannt und im Hauptsatz der Differenzial- und Integralrechnung formuliert. Hierzu trugen wesentlich ISAAC NEWTON und GOTTFRIED WILHELM LEIBNIZ bei.

Artikel lesen

Newtonsches und lagrangesches Interpolationsverfahren

Aufgabe der (allgemeinen) Interpolation ist es, zu n + 1 Punkten P 0 ,       P 1 ,       P 2 ,       ...,       P n ein Polynom (möglichst kleinen Grades) mit der Eigenschaft p ( x i ) = y i       ( m i t       i = 0,     1,     2,     ...,     n ) zu finden.
Dies ist mit dem newtonschen sowie dem lagrangeschen Interpolationsverfahren möglich, wobei das erstere Verfahren die größere praktische Bedeutung hat.

Artikel lesen

Evariste Galois

* 18. Oktober 1811 Bourg-la-Reine bei Paris
† 31. Mai 1832 Paris

EVARISTE GALOIS gelang eine Klärung der Lösbarkeit algebraischer Gleichungen durch Wurzelgrößen (Radikale). Er benutzte dazu die Gruppentheorie.

7 Suchergebnisse

Fächer
  • Mathematik (7)
Klassen
  • 5. Klasse (1)
  • 6. Klasse (1)
  • 7. Klasse (1)
  • 8. Klasse (1)
  • 9. Klasse (1)
  • 10. Klasse (1)
  • Oberstufe/Abitur (6)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025