Direkt zum Inhalt

9 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Beweisverfahren, Allgemeines

Betrachtet man die Mathematik als Gebäude, dann bilden Grundbegriffe und als wahr angenommene Aussagen (sogenannte Axiome) das Fundament. Der Aufbau des Gebäudes vollzieht sich im Wesentlichen dadurch, dass ausgehend von den Grundbegriffen weitere Begriffe gebildet werden sowie Zusammenhänge zwischen ihnen erkannt und in Aussagen formuliert werden. Als wahr erkannte Aussagen werden als Sätze in das Gebäude aufgenommen und bei dessen weiterer Vervollkommnung verwendet. Der Nachweis der Wahrheit einer Aussage, eines mathematischen Satzes, erfolgt durch einen Beweis.

Artikel lesen

Present perfect

Das present perfect steht bei Handlungen oder Tatsachen, die in der Vergangenheit begonnen haben und erst vor kurzer Zeit abgeschlossen wurden, bzw. bis zur Gegenwart angedauert haben. Es wird auch für Handlungen verwendet, die zwar abgeschlossen wurden, deren Folgen bzw. Auswirkungen jedoch noch in die Gegenwart reichen. 

Artikel lesen

Semantik

Semantik (griech. semantikos = zum Zeichen gehörend, bezeichnend) ist die Lehre von der Bedeutung sprachlicher Zeichen.
Die Begründung der Semantik als Bedeutungswissenschaft geht auf den französischen Philologen MICHEL JULES ALFRED BRÉAL zurück.
In der Semantik gibt es einen philosophischen (reinen) und einen linguistischen (deskriptiven und theoretischen) Ansatz sowie einen, der als allgemeine Semantik bezeichnet wird.
Diese semantischen Ansätze werden in verschiedenen Disziplinen genutzt.

Artikel lesen

Beweise, Allgemeines

Man unterscheidet im Wesentlichen zwei Beweisverfahren, den direkten Beweis und den indirekten Beweis.
Jeder Beweis besteht aus drei Schritten, die schon von EUKLID so angegeben wurden, nämlich
Voraussetzung – Behauptung – Beweis(durchführung).
Wenn eine mathematische Aussage bewiesen werden soll, dann ist es günstig, diese Aussage in Form einer Implikation,
also in „wenn …, dann …“-(oder in „wenn … , so gilt …“-) Form anzugeben. Der auf „wenn“ folgende Satzteil enthält bei einer solchen Formulierung die Voraussetzung, der sich an „dann“ (bzw. „so gilt“) anschließende die Behauptung. Die Umkehrung eines Satzes lässt sich auf diese Weise ebenfalls leichter formulieren.

Artikel lesen

Allgemeines zu Beweisverfahren

Betrachtet man die Mathematik als Gebäude, dann bilden Grundbegriffe und als wahr angenommene Grundaussagen (so genannte Axiome bzw. Postulate) das Fundament. Der Aufbau des Gebäudes vollzieht sich im Wesentlichen dadurch, dass ausgehend von den Grundbegriffen weitere Begriffe (sogenannte abgeleitete Begriffe) gebildet (definiert) werden sowie Zusammenhänge zwischen ihnen erkannt und in Aussagen formuliert werden. Als wahr erkannte Aussagen werden als Sätze (Lehrsätze) in das Gebäude aufgenommen und bei dessen weiterer Vervollkommnung verwendet.
Der Nachweis der Wahrheit einer Aussage, eines mathematischen Satzes, erfolgt durch einen Beweis. Man unterscheidet direkte und indirekte Beweise.

Artikel lesen

Berühmte mathematische Sätze

Das Theoriegebäude der Mathematik fußt auf nicht definierten Grundbegriffen sowie auf Aussagen, die im jeweiligen mathematischen System nicht zu beweisen sind, den sogenannten Axiomen. Über dieser Basis erhebt sich ein Geflecht von abgeleiteten Begriffen und durch Beweise gesicherten Aussagen, den mathematischen Sätzen.
Daneben stehen Aussagen, deren Wahrheitswert noch nicht bewiesen werden konnte und die deshalb den Charakter von Vermutungen tragen.
Der Beweis für den Großen fermatschen Satz und die Lösung des Vierfarbenproblems gelangen erst in jüngerer Vergangenheit. Demgegenüber stehen Beweise für die goldbachsche Vermutung oder die Vermutung über Primzahlzwillinge noch aus.

Artikel lesen

Axiomatische Methode

In der kritischen Auseinandersetzung zur Entstehung der nichteuklidischen Geometrien, durch die die Auffassung von der Alleingültigkeit der Geometrie EUKLIDs und damit der genauen Beschreibung des realen physikalischen Raumes beseitigt wurde, hatte die axiomatische Methode zum Aufbau einer Theorie, die inzwischen Grundlage des Theorieaufbaus vieler Bereiche der modernen Mathematik ist, eine besondere Bedeutung.

Artikel lesen

Berühmte mathematische Sätze und Vermutungen

Die Mathematik stellt ein vielfältig verwobenes System von mathematischen Begriffen, Aussagen, Axiomen, Regeln usw. unterschiedlicher Abstraktionshöhe dar, das in einer langen Geschichte gewachsen ist und sich ständig weiterentwickelt. Dieser Prozess hat dabei seine Ursache sowohl in inneren Bedürfnissen der Mathematik selbst als auch in Anforderungen der Praxis.
Aussagen, deren Wahrheitswert noch nicht bewiesen werden konnte, tragen den Charakter von Vermutungen. So stehen die Beweise beispielsweise für die goldbachsche Vermutung oder die Vermutung über Primzahlzwillinge noch aus.

Artikel lesen

Present perfect und present perfect progressive

Das present perfect steht bei Handlungen oder Tatsachen, die in der Vergangenheit begonnen haben und erst vor kurzer Zeit abgeschlossen wurden, bzw bis zur Gegenwart angedauert haben. Es wird auch für Handlungen verwendet, die zwar abgeschlossen wurden, deren Folgen bzw. Auswirkungen jedoch noch in die Gegenwart reichen.
Tina has been drinking cola all evening. She is even drinking more. What have you been doing all afternoon? I’ve been watching TV. But Bill has been smoking cigarettes for hours and hasn’t stopped yet.

9 Suchergebnisse

Fächer
  • Deutsch (1)
  • Englisch (2)
  • Mathematik (6)
Klassen
  • 5. Klasse (6)
  • 6. Klasse (6)
  • 7. Klasse (6)
  • 8. Klasse (6)
  • 9. Klasse (6)
  • 10. Klasse (6)
  • Oberstufe/Abitur (3)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025