Direkt zum Inhalt

6 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Berechnung der Bogenlänge

Die Berechnung der Bogenlänge ist für die Bearbeitung innermathematischer und vieler technischer (insbesondere bautechnischer) Probleme bedeutsam.
Als Beispiele seien die Berechnung der Länge eines Parabelbogens, der Kettenlinie, einer Schleife oder eines Brückenbogens genannt.

Artikel lesen

Jakob Bernoulli

* 27. Dezember 1654 (6. Januar 1655) Basel
† 16. August 1705 Basel

JAKOB BERNOULLI gilt als einer der Hauptvertreter der Infinitesimalrechnung seiner Zeit. Gemeinsam mit seinem Bruder Johann entwickelte er den „Leibnizschen Calculus“ weiter.
Mit dem aus seinem Nachlass im Jahre 1713 herausgegebenen Buch „Ars conjectandi“ wurde JAKOB BERNOULLI zum Begründer einer Theorie der Wahrscheinlichkeitsrechnung. In diesem Werk wird u.a. die Anwendung der Kombinatorik auf Glücks- und Würfelspiele beschrieben, und das (schwache) Gesetz der großen Zahlen wird formuliert.

Artikel lesen

Christiaan Huygens

* 14. April 1629 Den Haag
† 8. Juli 1695 Den Haag

CHRISTIAAN HUYGENS war ein äußerst vielseitiger Naturwissenschaftler.
Unter anderem entdeckte er die Doppelbrechung am Kalkspat und erklärte sie mithilfe der Wellennatur des Lichtes.
Auch machte er eine Reihe astronomischer Entdeckungen.
HUYGENS beteiligte sich aktiv an der Lösung mathematischer Probleme seiner Zeit, u.a. schuf er eine erste geschlossene Theorie des Würfelspiels.

Artikel lesen

Die Kettenlinie

Als Kettenlinie bzw. Katenoide (engl. catenary; franz. chainette) wird die Kurve bezeichnet, die durch eine in zwei nicht senkrecht übereinander liegenden Punkten frei aufgehängte Kette gegeben ist. Analytisch ist diese durch die hyperbolische Funktion (Hyperbelfunktion) Cosinus hyperbolicus beschrieben.
Die Drehfläche der Kettenlinie heißt Katenoid (Catenoid).

Artikel lesen

Christiaan Huygens

CHRISTIAAN HUYGENS (1629 bis 1695), niederländischer Physiker, Astronom und Mathematiker
* 14. Februar 1629 Den Haag
† 8. Juni 1695 Den Haag

CHRISTIAAN HUYGENS war ein äußerst vielseitiger Naturwissenschaftler. Unter anderem entdeckte er die Doppelbrechung am Kalkspat und erklärte sie mithilfe der Wellennatur des Lichtes. Auch machte er eine Reihe astronomischer Entdeckungen.
HUYGENS beteiligte sich aktiv an der Lösung mathematischer Probleme seiner Zeit, u. a. schuf er eine erste geschlossene Theorie des Würfelspiels.

Artikel lesen

Hyperbolische Funktionen (Hyperbelfunktionen)

Die sogenannten hyperbolischen Funktionen traten in ihren Grundlagen u.a. bereits bei NEWTON auf. Die Theorie dieser Funktionen begründete der italienische Mathematiker VINCENZO RICCATI.
Im Jahre 1768 kam JOHANN HEINRICH LAMBERT auf die Idee, sie für die Trigonometrie zu nutzen.

6 Suchergebnisse

Fächer
  • Mathematik (6)
Klassen
  • 5. Klasse (1)
  • 6. Klasse (1)
  • 7. Klasse (1)
  • 8. Klasse (1)
  • 9. Klasse (1)
  • 10. Klasse (1)
  • Oberstufe/Abitur (5)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025