Direkt zum Inhalt

16 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Robert Hooke

* 1635 Freshwater
† 1703 London
Er war ein bedeutender englischer Naturforscher, fand das nach ihm benannte Gesetz über die Proportionalität zwischen Dehnung und Belastung bei einer Spiralfeder, entdeckte die Korkzellen, konstruierte ein Teleskop, ein Quecksilberbarometer und einen selbst registrierenden Regenmesser.

Artikel lesen

Hookesches Gesetz

Für alle elastisch verformbaren Körper und insbesondere für elastische Federn gilt, dass die Längenänderung der einwirkenden Kraft proportional ist:

s ~ F    oder   F s = konstant   oder   F = D ⋅ s
 

Dabei bedeuten:sLängenänderung der Feder
 Feinwirkende Kraft
 DFederkonstante

Dieses Gesetz wurde von dem englischen Naturforscher ROBERT HOOKE (1635-1703) entdeckt und nach ihm benannt. Es wird u. a. bei der Konstruktion von Federkraftmessern genutzt.

Artikel lesen

Matthias Schleiden

* 05.04.1804 in Hamburg
† 23.06.1881 in Frankfurt am Main

Der deutsche Biologe MATTHIAS JAKOB SCHLEIDEN gehört zu den bedeutenden Botanikern des 19. Jahrhunderts. Er erkannte, dass der Grundbaustein jeder Pflanze die Zelle ist und lieferte damit die ersten wichtigen Ansätze für die „Zelltheorie“. Seine Aussage war ein Paradigmenwechsel, der durch das entscheidende Werkzeug, dem Mikroskop entwickelt werden konnte.
SCHLEIDEN führte nicht nur die analytische, induktive Forschungsweise in die Botanik ein, er war auch Anthropologe und Anhänger „der mathematischen Naturphilosophie“.

Artikel lesen

Robert Hooke

* 28.07.1635 Freshwater
† 14.03.1703 London

ROBERT HOOKE war ein bedeutender englischer Naturforscher. Er fand das nach ihm benannte Gesetz über die Proportionalität zwischen Dehnung und Belastung bei einer Spiralfeder, konstruierte u. a. ein Teleskop, ein Quecksilberbarometer, einen selbstregistrierenden Regenmesser und ein Mikroskop, mit dem er die Pflanzenzellen entdeckte.

Artikel lesen

Antony van Leeuwenhoek

* 24.10.1632 in Delft
† 27.08.1723 in Delft (Niederlande)


ANTONY VAN LEEUWENHOEK, ein niederländischer Naturforscher hatte viele Berufe. Er arbeitete als Kaufmann, Tuchhändler, Feldmesser und Eichmeister. Seine spezielle Leidenschaft galt der Mikroskopie. Er soll um die 550 Linsen geschliffen haben und hat Mikroskope mit maximal 275-facher Vergrößerung konstruiert. Er entdeckte mit seinen Erfindungen und seinem autodidaktischem Forscherdrang zahlreiche Mikroorganismen.

LEEUWENHOEK beschrieb Wimper- und Geißeltierchen, Stärkekörner, Räder- und Moostierchen und sogar Bakterien. Als er den Schwanz einer Kaulquappe genauer untersuchte und die Blutbewegung durch die Kapillaren verfolgte, erkannte er die roten Blutkörperchen. 1676 entdeckte er Spermien von Insekten, Säugetieren und Menschen. Des Weiteren beschäftigte er sich mit der quergestreiften Muskulatur, der Herzmuskulatur, der Muskulatur der Insekten und mit dem Glaskörper des Auges. Er kannte die Tüpfel der Pflanzen und war bereits in der Lage ein- und zweikeimblättrige Pflanzen zu unterscheiden.

Artikel lesen

Elektronenmikroskop

1924 erkannte der französische Physiker LOUIS DE BROGLIE (1892-1987), dass sich bewegende Elektronen kürzere Wellenlängen haben als Lichtstrahlen, sich bündeln lassen und genutzt werden können, um äußerst dünne Präparate zu durchleuchten. Das Elektronenmikroskop war „ geboren“. Es wurde erst im Jahr 1931 von dem Deutschen ERNST RUSKA (1906-1988) gebaut. Damit konnte einebis zu 2 000 000-Fache Vergrößerung des Objektbilds erreicht werden. So war es z. B. möglich, den Aufbau von feinsten Strukturen der Lebewesen und Viren erstmals zu erkennen. Während die besten Lichtmikroskope eine Auflösung von maximal 0,2 µm (= 200 nm) besitzen, kann man mit den hochbeschleunigten Elektronen des Elektronenmikroskops ein Auflösungsvermögen von maximal 0,0001 µm (= 0,1 nm), also 2 000-mal so groß wie beim Lichtmikroskop, erreichen.

Artikel lesen

Entdeckungsgeschichte der Zelle

Was die Wissenschaft heute vom Bau der Zelle und ihren Funktionen weiß, wie sie diese zu nutzen versteht, sie physiologisch beeinflussen und in ihrem Erbgut verändern kann, das ist das Ergebnis eines fast 350 Jahre währenden Erkenntnis- und Forschungsprozesses. Erst nach der Entwicklung stark vergrößernder optischer Geräte war es überhaupt möglich, die kleinsten Bestandteile eines Lebewesens sichtbar zu machen. Eine bedeutende Rolle nahm dabei die Konstruktion des Mikroskops ein. Viele Wissenschaftler beschäftigten sich seitdem mit der Erforschung der Zellen, ihrer Strukturen, Eigenschaften und Bestandteile und reicherten den Erkenntnisstand bis zum heute verfügbaren Wissen an.

Artikel lesen

Mikroskop

Nur mithilfe der Entwicklung der Mikroskopiertechnik konnte der Mensch selbst kleinste Strukturen sichtbar machen und so die natürlichen Grenzen des menschlichen Sehens überwinden. Ohne die Entwicklung der Mikroskopiertechnik hätten wir den heutigen biologischen Kenntnisstand nicht erreichen können. So wäre beispielsweise die moderne Gentechnik, Molekularbiologie oder Medizin ohne die extreme Vergrößerung von Zellen, Viren, Bakterien oder anderen Objekten undenkbar.
Ansätze der Mikroskopie sind bereits in der Antike zu erkennen. Bereits um 500 v. Chr. benutzten die Griechen und Römer Lupen als Brenngläser, um Objekte zu vergrößern, jedoch sollten bis zur Entwicklung des ersten Mikroskops noch rund 2 000 Jahre vergehen. Um 1637 entwickelte ANTONY VAN LEEUWENHOEK (1632-1723) eines der ersten Mikroskope, mit welchem er bereits Karies, den Aufbau von Samen, Früchten, Blüten und auch Augen verschiedener Tiere untersuchen konnte.

Artikel lesen

Robert Hooke


* 1635 Freshwater
† 1703 London

Er war ein bedeutender englischer Naturforscher, fand das nach ihm benannte Gesetz über die Proportionalität zwischen Dehnung und Belastung bei einer Spiralfeder, entdeckte die Korkzellen, konstruierte ein Teleskop, ein Quecksilberbarometer und einen selbstregistrierenden Regenmesser.

Artikel lesen

Mikroskop

Nur mithilfe der Entwicklung der Mikroskopiertechnik konnte der Mensch selbst kleinste Strukturen sichtbar machen und so die natürlichen Grenzen des menschlichen Sehens überwinden. Ohne die Entwicklung der Mikroskopiertechnik hätten wir den heutigen biologischen Kenntnisstand nicht erreichen können. So wäre beispielsweise die moderne Gentechnik, Molekularbiologie oder Medizin ohne die extreme Vergrößerung von Zellen, Viren, Bakterien oder anderen Objekten undenkbar.
Ansätze der Mikroskopie sind bereits in der Antike zu erkennen. Bereits um 500 v. Chr. benutzten die Griechen und Römer Lupen als Brenngläser, um Objekte zu vergrößern, jedoch sollten bis zur Entwicklung des ersten Mikroskops noch rund 2 000 Jahre vergehen. Um 1637 entwickelte ANTONY VAN LEEUWENHOEK (1632-1723) eines der ersten Mikroskope, mit welchem er bereits Karies, den Aufbau von Samen, Früchten, Blüten und auch Augen verschiedener Tiere untersuchen konnte.

Artikel lesen

Ein neuer Anfang in der Renaissance

Während das klassische Altertum durch eine nach außen gerichtete Geisteshaltung gekennzeichnet war, dominierte unter dem Einfluss der christlichen Kirchen im Mittelalter eine ganz nach innen gerichtete Weltanschauung. Nur selten wurde der Versuch unternommen, hergebrachte Lehrmeinungen durch Untersuchung der realen Gegebenheiten zu überprüfen oder zu revidieren.

Artikel lesen

Elektronenmikroskop

1924 erkannte der französische Physiker LOUIS DE BROGLIE (1892–1987), dass sich bewegende Elektronen kürzere Wellenlängen haben als Lichtstrahlen, sich bündeln lassen und genutzt werden können, um äußerst dünne Präparate zu durchleuchten. Das Elektronenmikroskop war „geboren“. Es wurde erst im Jahre 1931 von dem Deutschen ERNST RUSKA (1906–1988) gebaut. Damit konnte eine Vergrößerung des Objektbilds bis zu 2 000 000-fach erreicht werden. So war es z. B. möglich, den Aufbau von feinsten Strukturen der Lebewesen und Viren erstmals zu erkennen. Während die besten Lichtmikroskope eine Auflösung von maximal 0,2 µm (= 200 nm) besitzen, kann man mit den hochbeschleunigten Elektronen des Elektronenmikroskops ein Auflösungsvermögen von maximal 0,0001 µm (= 0,1 nm), also 2 000-mal so groß wie beim Lichtmikroskop, erreichen.

Artikel lesen

Antony van Leeuwenhoek

* 24.10.1632 in Delft
† 27.08.1723 in Delft (Niederlande)

ANTONY VAN LEEUWENHOEK, ein niederländischer Naturforscher, hatte viele Berufe. Er arbeitete als Kaufmann, Tuchhändler, Feldmesser und Eichmeister. Seine spezielle Leidenschaft galt der Mikroskopie. Er soll um die 550 Linsen geschliffen haben und hat Mikroskope mit maximal 275-facher Vergrößerung konstruiert. Er entdeckte mit seinen Erfindungen und seinem autodidaktischem Forscherdrang zahlreiche Mikroorganismen.

LEEUWENHOEK beschrieb Wimper- und Geißeltierchen, Stärkekörner, Räder- und Moostierchen und sogar Bakterien. Als er den Schwanz einer Kaulquappe genauer untersuchte und die Blutbewegung durch die Kapillaren verfolgte, erkannte er die roten Blutkörperchen. 1676 entdeckte er Spermien von Insekten, Säugetieren und Menschen. Des Weiteren beschäftigte er sich mit der quergestreiften Muskulatur, der Herzmuskulatur, der Muskulatur der Insekten und mit dem Glaskörper des Auges. Er kannte die Tüpfel der Pflanzen und war bereits in der Lage, ein- und zweikeimblättrige Pflanzen zu unterscheiden.

Artikel lesen

Robert Hooke

* 18.07.1635 Freshwater
† 03.03.1703 London

Er war ein bedeutender englischer Naturforscher, fand das nach ihm benannte Gesetz über die Proportionalität zwischen Dehnung und Belastung bei einer Spiralfeder, entdeckte die Korkzellen, konstruierte ein Teleskop, ein Quecksilberbarometer und einen selbst registrierenden Regenmesser.

Artikel lesen

Kräfte und ihre Messung

Der Begriff Kraft wird im Alltag und in der Physik in vielfältiger Weise verwendet. Während der Alltagsbegriff mit unterschiedlichen Begriffsinhalten genutzt wird, ist die physikalische Größe Kraft eindeutig definiert:
Die Kraft gibt an, wie stark ein Körper bewegt oder verformt wird. Sie ist eine Wechselwirkungsgröße und eine vektorielle (gerichtete) Größe. Die Wirkung einer Kraft ist abhängig von ihrem Betrag, ihrer Richtung und ihrem Angriffspunkt.


Formelzeichen: F → Einheit: ein Newton (1 N) 1 N = 1 kg ⋅ m s 2
Man unterscheidet u.a. elektrische Kräfte, magnetische Kräfte, Reibungskräfte, Druckkräfte, Radialkräfte, Gewichtskräfte, Schubkräfte, Spannkräfte und Zugkräfte, Adhäsionskräfte und Kohäsionskräfte, innere Kräfte und äußere Kräfte voneinander.

Artikel lesen

Zeit und Zeitmessung

Die Zeit gibt an, wie groß die Dauer zwischen zwei Ereignissen ist.
Formelzeichen: t
Einheit: eine Sekunde (1 s)
Statt von Zeit spricht man manchmal auch von Zeitdauer oder von Zeitintervall. Gemeint ist damit immer die Dauer zwischen zwei Ereignissen, also eine Zeit. Davon zu unterscheiden ist der Zeitpunkt, unter dem ein bestimmter Moment verstanden wird.
Schon im Altertum wurde mithilfe von Sonnenuhren die Zeit gemessen. Viele Jahrhunderte lang wurden Wasser- und Sanduhren als Zeitmesser genutzt. Entscheidende Fortschritte wurden im 16. Und 17. Jahrhundert mit der Konstruktion der ersten mechanischen Uhren (Nürnberger Ei von PETER HENLEIN) und der Nutzung von Pendelschwingungen für Uhren (HUYGENS, HOOKE) erzielt. 1929 wurde die erste Quarzuhr gebaut, 1948 die erste Atomuhr. Bei diesen Uhren tritt in 200.000 Jahren eine Abweichung von weniger als einer Sekunde auf.

16 Suchergebnisse

Fächer
  • Biologie (11)
  • Physik (5)
Klassen
  • 5. Klasse (6)
  • 6. Klasse (6)
  • 7. Klasse (6)
  • 8. Klasse (6)
  • 9. Klasse (6)
  • 10. Klasse (6)
  • Oberstufe/Abitur (10)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025