Direkt zum Inhalt

3 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Kegelschnitte in Polarkoordinatendarstellung

Zur Darstellung von Kegelschnitten in Polarkoordinaten werden die folgenden Umrechnungsformeln (von kartesischen Koordinaten in Polarkoordinaten) benutzt:
  x = r ⋅ cos ϕ y = r ⋅ sin ϕ   ( ∗ )

Durch Einsetzen in die Mittelpunkts- oder Scheitelgleichungen des entsprechenden Kegelschnittes und anschließendes Umformen ergeben sich die gewünschten Darstellungen.

Artikel lesen

Kugelkoordinaten

Für geometrische Probleme, die sich auf der Oberfläche einer Kugel abspielen, erweist es sich als unzweckmäßig, mit kartesischen Koordinaten zu arbeiten. Hier wählt man statt der rechtwinkligen Koordinaten für den Punkt P ( x ;   y ;   z ) eine Form, die wir auch von der Geografie der Erde mit Längen- und Breitenkreisen kennen.
Hinzu kommt (als dritte Kugelkoordinate) der Abstand des Punktes P vom Ursprung, genannt Radius r.

Artikel lesen

Polarkoordinatensystem

Ein Punkt der Ebene kann durch die Angabe von zwei Koordinaten im kartesischen Koordinatensystem, einem geordneten Zahlenpaar [ x ;   y ] , eindeutig beschrieben werden.

Eine weitere Möglichkeit stellt die folgende Vorgehensweise dar:
Ein Ursprungspunkt O wird beliebig festgelegt. Von diesem ausgehend wird ein Strahl gezeichnet. Nun beschreiben der Abstand r des Punktes P von O und der Drehwinkel ϕ mit 0   ° ≤ ϕ < 360   ° , um den der Strahl aus seiner Ursprungslage bis zum Punkt P werden muss, die Lage des Punktes P eineindeutig.

3 Suchergebnisse

Fächer
  • Mathematik (3)
Klassen
  • Oberstufe/Abitur (3)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025