Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Mathematik Abitur
  3. 3 Funktionen und ihre Eigenschaften
  4. 3.6 Klassen reeller Funktionen
  5. 3.6.2 Lineare Funktionen
  6. Funktionen mit der Gleichung y = mx

Funktionen mit der Gleichung y = mx

Jeder direkt proportionale Zusammenhang zwischen zwei Größen x und y kann durch eine spezielle lineare Funktion mit der Gleichung
  y = f ( x ) = m x   ( m x ≠ 0 )
beschrieben werden.
Definitonsbereich und Wertevorrat (Wertebereich) von f ist die Menge der reellen Zahlen ℝ . Der Graph von f ist eine Gerade, die durch den Koordinatenursprung O verläuft.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Wenn sich eine Schildkröte mit einer gleichbleibenden Geschwindigkeit von 1,5 m min fortbewegt, so besteht zwischen zurückgelegtem Weg und verflossener Zeit ein spezieller funktionaler Zusammenhang: Es handelt sich um eine direkte Proportionalität mit dem Proportionalitätsfaktor 1,5 m min . Mittels der Gleichung s = 1,5 m min ⋅ t lässt sich der Weg berechnen, den die Schildkröte in der Zeit t (gemessen in Minuten) zurückgelegt hat.
 

Zeit t in min0123...
Weg s in m01,534,5...

 

  • Weg-Zeit-Diagramm

Jeder direkt proportionale Zusammenhang zwischen zwei Größen y und x kann durch eine spezielle lineare Funktion mit der Gleichung y = f(x) = mx (m ≠ 0) beschrieben werden. Solche Funktionen haben folgende Eigenschaften:

  1. Der Definitions- und der Wertebereich ist ℝ .
  2. Der Graph von y = f(x) = mx ist stets eine Gerade, die durch den Koordinatenursprung verläuft.

Die Zahl m heißt dabei der Anstieg der Funktion f. Er gibt das Verhältnis einander zugeordneter Werte aus Definitions- und Wertebereich an.

  • Steigende Gerade
  • Steigende Gerade

Anschaulich betrachtet, kann man sagen:
Wenn x um 1 vergrößert wird, so verändert sich y um m.
Ist dabei m > 0, so wachsen die Funktionswerte an – die Gerade steigt.
Ist dagegen m < 0, so fallen die Funktionswerte wie auch die Gerade.

Um den Graphen einer linearen Funktion mit y = mx zu zeichnen, werden nur zwei Punkte benötigt. Als ein Punkt kann z.B. immer der Koordinatenursprung gewählt werden.
Einen zweiten Punkt erhält man, indem man

  1. die Koordinaten dieses Punktes mithilfe der Funktionsgleichung berechnet oder
  2. den Anstieg m benutzt.
  • Fallende Gerade

Beispiel 1: Koordinaten mittels Funktionsgleichung berechnen

Für x = 2 :
y = 2 , 5 x
y = 2 , 5 ⋅ 2
y = 5 :
P ( 2 ; 5 )

  • y = 2,5x

Beispiel 2: Koordinaten mittels Anstieg bestimmen

y = 3 4 x; m = 3 4
Wenn x um 1 wächst, so wächst y um 3 4 ,
wenn x um 4 wächst, wächst y um 3.
P (4; 3 )

  • y = 0,75x

Beispiel 3: y = – 2x

Für  x = 1:
y = – 2 · 1
y = – 2
P 1 (1; – 2)

Oder:
Für x = – 1 2 :
y = – 2 · (– 1 2 )
y = 1
P 2 (– 1 2 ; 1)

  • y = - 2x

Beispiel 4: y = – 1 2 x

m = – 1 2
Wenn x um 1 wächst, so fällt y um 1 2 ,
wenn x um 2 wächst, so fällt y um 1.
Oder: Wenn x um 2 fällt, so wächst y um 1.

  • y = - 0,5x

Das eingezeichnete rechtwinklige Dreieck nennt man Anstiegsdreieck (Steigungsdreick). Anstiegsdreiecke kann man in beliebiger Größe und an beliebiger Stelle zeichnen sowie entlang des Graphen verschieben.

  • Anstiegsdreieck

Durch die Gleichung y = f(x) = mx wird eine ganze Schar von Funktionen beschrieben, die sich nur im Anstieg m unterscheiden. Die Zahl m wird ein Parameter der Funktionsschar y = mx genannt. Zu der Funktionsschar gehört eine Geradenschar, deren einzelnen Elemente für m > 0 wachsen (steigen) und für m < 0 fallen.

  • Schar von Funktionen
Lernhelfer (Duden Learnattack GmbH): "Funktionen mit der Gleichung y = mx." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/index.php/schuelerlexikon/mathematik-abitur/artikel/funktionen-mit-der-gleichung-y-mx (Abgerufen: 20. May 2025, 20:42 UTC)

Suche nach passenden Schlagwörtern

  • fallen
  • Proportionalitätsfaktor
  • Anstieg
  • direkte Proportionalität
  • Funktionsgleichung
  • Graph der linearen Funktion
  • Mathcad
  • Steigen
  • interaktives Rechenbeispiel
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Asymptoten (asymptotische Linien)

Untersucht man ganzrationale Funktionen für beliebige große bzw. kleine x-Werte, so werden auch die Funktionswerte beliebig groß oder klein:
Für x → ±   ∞ gilt |   f ( x )   | = +   ∞ .

Völlig verschieden davon ist das Verhalten gebrochenrationaler Funktionen der Form
f(x) = p(x) q(x) .

Deren Graphen schmiegen sich für beliebig groß bzw. klein werdende Argumente immer mehr an eine Gerade an. Derartige Geraden werden Asymptoten des Graphen der Funktion genannt. Man unterscheidet zwischen waagerechten (horizontalen) und schiefen Asymptoten sowie asymptotischen Linien bzw. Kurven.

Anmerkung: Gelegentlich werden auch die Polgeraden bei vorhandenen Definitionslücken als senkrechte (vertikale) Asymptoten bezeichnet.

Johann Bernoulli

* 6. August 1667 (27. Juli 1667) Basel
† 1. Januar 1748 Basel

JOHANN BERNOULLI trug wesentlich zur Herausbildung moderner Auffassungen zur Infinitesimalrechnung und deren Verbreitung in Europa bei. Gemeinsam mit seinem älteren Bruder JAKOB und in Korrespondenz mit GOTTFRIED WILHELM LEIBNIZ entwickelte er den sogenannten „Leibnizschen Calculus“ weiter, der Begriff Integralrechnung geht auf ihn zurück.
Intensiv beschäftigte sich JOHANN BERNOULLI mit Anwendungen der Infinitesimalrechung auf physikalische und technische Probleme, zum Beispiel untersuchte er das Verhalten strömender Flüssigkeiten.

Definitionslücken

Definitionslücken treten insbesondere bei gebrochenrationalen Funktionen auf. Alle x-Werte, für die die Nennerfunktion den Wert Null annimmt, werden als Definitionslücken bezeichnet.
Man unterscheidet zwischen Polstellen und hebbaren Definitionslücken.

Quadratische Funktionen

Eine Funktion mit einer Gleichung der Form
  y = f ( x ) = a x 2 + b x + c   ( mit  a ≠ 0,       x ∈ ℝ )
oder einer Gleichung, die durch äquivalentes Umformen in diese Form überführt werden kann, heißt quadratische Funktion.
Dabei nennt man a x 2 das quadratische Glied, bx das lineare Glied und c das absolute Glied der Funktionsgleichung.
Der Graph einer quadratischen Funktion ist eine Parabel.

Betragsfunktion

Die Betragsfunktion ist ein Beispiel für eine stückweise erklärte stetige Funktion.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025