Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Mathematik
  3. 5 Gleichungen und Ungleichungen
  4. 5.2 Grundlagen der Gleichungslehre
  5. 5.2.2 Lösen einer Gleichung bzw. Ungleichung; Lösungsmenge
  6. Intervalle

Intervalle

Eine Menge reeller Zahlen nennt man Intervall, wenn sie sich auf der Zahlengeraden als Strecke darstellen lässt.
Gehören die Randwerte mit zum Intervall, spricht man von einem abgeschlossenen Intervall, gehören sie nicht zur dargestellten Menge, spricht man von einem offenen Intervall.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Eine Menge reeller Zahlen nennt man Intervall, wenn sie sich auf der Zahlengeraden, als Strecke darstellen lässt.
Gehören die Randwerte mit zum Intervall, spricht man von einem abgeschlossenen Intervall, gehören sie nicht zur dargestellten Menge, spricht man von einem offenen Intervall.
Die Intervallgrenzen werden zumeist mit eckigen Klammern oder Punkten gekennzeichnet (Bild 1).

  • Übersicht über Intervalle

Intervallarten und Beispiele

abgeschlossenes Intervall
[ a;   b ] = { x ∈ ℝ   |   a ≤ x ≤ b }

[ a;   b ] ist die Menge aller x ∈ ℝ ; x ist größer bzw. gleich a und kleiner bzw. gleich b. Die Randwerte a und b gehören damit zum Intervall.

Beispiel (Bild 2): [ − 2;   6 ]
Die Menge besteht aus allen rellen Zahlen zwischen –2 und 6, für die gilt − 2   ≤   x ≤   6 . Sowohl –2 als auch 6 gehören zur Menge.

  • Abgeschlossenes Intervall

offenes Intervall
]   a;   b   [ = { x ∈ ℝ   |   a < x < b }

]   a;   b   [ ist die Menge aller x ∈ ℝ ; x ist größer a und kleiner b.
Die Randwerte a und b gehören damit nicht zum Intervall.

Beispiel (Bild 3): ]   − 2;   6   [
Die Menge besteht aus allen rellen Zahlen zwischen –2 und 6, für die gilt − 2   <   x <   6 . Sowohl –2 als auch 6 gehören nicht zur Menge.

]   a;   ∞   [ ist die Menge aller x ∈ ℝ ; x ist größer a.
Der Randwert a gehört nicht zum Intervall.

]   – ∞ ;   b   [ ist die Menge aller x ∈ ℝ ; x ist kleiner b.
Der Randwert b gehört nicht zum Intervall.

  • Offenes Intervall

rechtsoffenes Intervall
[   a;   b   [ = { x ∈ ℝ   |   a ≤ x < b }

[   a;   b   [ ist die Menge aller x ∈ ℝ ; x ist größer a bzw. gleich und kleiner b.
Der Randwert a gehört zum Intervall, und b gehört nicht zum Intervall.

Beispiel (Bild 4): [   − 2;   6   [
Die Menge besteht aus allen rellen Zahlen zwischen –2 und 6,
für die gilt − 2   ≤   x <   6 . Die Zahl –2 gehört zur Menge, die Zahl 6 nicht.

[   a;   ∞   [ ist die Menge aller x ∈ ℝ ; x ist größer bzw. gleich a.
Der Randwert a gehört zum Intervall.

  • Rechtsoffenes Intervall

linksoffenes Intervall
]   a;   b   ] = { x ∈ ℝ   |   a < x ≤ b }

]   a;   b   ] ist die Menge aller x ∈ ℝ ; x ist größer a und kleiner bzw. gleich b.
Der Randwert a gehört nicht zum Intervall und b gehört zum Intervall.

Beispiel (Bild 5): ]   − 2 ;   6   ]
Die Menge besteht aus allen rellen Zahlen zwischen –2 und 6, für die gilt − 2   < x ≤   6 . Die Zahl –2 gehört nicht zur Menge, die Zahl
6 gehört zur Menge.

]   − ∞ ;   b   ] ist die Menge aller x ∈ ℝ ; x ist kleiner bzw. gleich b.
Der Randwert b gehört zum Intervall.

  • Linksoffenes Intervall
Lernhelfer (Duden Learnattack GmbH): "Intervalle." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/index.php/schuelerlexikon/mathematik/artikel/intervalle (Abgerufen: 20. May 2025, 21:54 UTC)

Suche nach passenden Schlagwörtern

  • Klammern
  • Randwerte
  • offenes Intervall
  • Intervall
  • Zahlengerade
  • linksoffenes Intervall
  • rechtsoffenes Intervall
  • Menge
  • abgeschlossenes Intervall
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Gleichungen, grafisches Lösen

Gleichungen, für die exakte Lösungsverfahren nicht bekannt oder zu zeitaufwändig sind, lassen sich oft mit hinreichender Genauigkeit grafisch lösen. Dabei geht man von der zu lösenden Bestimmungsgleichung zur entsprechenden Funktionsgleichung über, stellt (unter Verwendung eines Taschenrechners) eine Wertetabelle auf und zeichnet den Graphen der Funktion. Die Abszissen der Schnittpunkte des Funktionsgraphen mit der x-Achse, also die Nullstellen, sind die Lösungen der Gleichung. Man liest sie näherungsweise ab. Die Genauigkeit beim Ablesen kann verbessert werden, wenn die Funktion in einem immer engeren Intervall um die Nullstelle herum dargestellt wird.

Gleichungen, Inhaltliches Lösen

Das Lösen von Gleichungen (Ungleichungen) gelingt oftmals durch einfache Überlegungen ohne Anwendung formaler Regeln. Man spricht dann vom inhaltlichen Lösen einer Gleichung (Ungleichung) im Unterschied zum kalkülmäßigen Lösen (Anwenden von Lösungsverfahren).
Zu den Verfahren des inhaltlichen Lösens einer Gleichung (Ungleichung) zählt man im Allgemeinen das Zerlegen von Termen und Zahlen, das Einsetzen bzw. das systematische Probieren, das Rückwärtsschließen und das Schließen unter Benutzung von Veranschaulichungen.

Lineare Gleichungssysteme, Grafisches Lösen

Ein lineares Gleichungssystem mit den beiden Variablen x und y besteht aus zwei linearen Gleichungen (I und II) mit jeweils den Variablen x und y.
I     a 1 x + b 1 y = c 1     a 1 ,b 1 ,c 1 ∈ ℚ II       a 2 x + b 2 y = c 2       a 2 ,b 2 ,c 2 ∈ ℚ
Zur Lösungsmenge eines linearen Gleichungssystems gehören die Zahlenpaare, die sowohl zur Lösungsmenge der Gleichung I als auch zur Lösungsmenge der Gleichung II gehören.

Lineare Ungleichungen, mit einer Variablen

Zwei Terme, zwischen denen eines der Zeichen > ,    < ,    ≤ ,    ≥  oder  ≠ steht, bilden eine Ungleichung.
Ungleichungen der Form ax + b < 0 ( a ≠ 0 ) oder solche, die durch äquivalentes Umformen in diese Form überführt werden können, heißen lineare Ungleichungen mit einer Variablen.

Lineare Ungleichungen, mit zwei Variablen

Zwei Terme, zwischen denen eines der Zeichen < ,     > ,     ≤ ,     ≥  oder  ≠ steht, bilden eine Ungleichung.
Ungleichungen der Form a x + b y + c < 0       ( a ,   b ≠ 0 ) oder solche, die durch äquivalentes Umformen in diese Form überführt werden können, heißen lineare Ungleichungen mit zwei Variablen.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025