Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Mathematik
  3. 3 Zahlen und Rechnen
  4. 3.1 Natürliche Zahlen
  5. 3.1.2 Rechnen mit natürlichen Zahlen
  6. Kaprekarzahlen

Kaprekarzahlen

Mithilfe der Subtraktion kann man eine interessante Eigenschaft dreistelliger Zahlen entdecken. Nach endlich vielen Rechenoperationen erhält man – unabhängig von der Ausgangszahl – stets 495.
Diese Zahl heißt Kaprekarzahl, nach dem indischen Mathematiker D.R. KAPREKAR, der diese Eigenschaft 1949 fand.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Mithilfe der Subtraktion kann man eine interessante Eigenschaft dreistelliger Zahlen entdecken.
Man ordne die Ziffern einer dreistelligen Zahl (bei der nicht alle Ziffern gleich sind) einmal so, dass die größtmögliche Zahl entsteht, und dann so, dass die kleinstmögliche Zahl entsteht. Dann bildet man die Differenz und wendet das Verfahren auf das Resultat erneut an. Nach endlich vielen Schritten erhält man – unabhängig von der Ausgangszahl – stets 495.
Diese Zahl heißt Kaprekarzahl, nach dem indischen Mathematiker D. R. KAPREKAR, der diese Eigenschaft 1949 fand.
Die Kaprekarzahl für vierstellige Zahlen lautet 6174.

Ausgangszahl: 734

Ausgangszahl: 4783

743 – 347 = 3968743 – 3478 = 5265
963 – 369 = 5946552 – 2556 = 3996
954 – 459 = 4959963 – 3699 = 6264
 6642 – 2466 = 4176
 7641 – 1467 = 6174


Für zwei-, fünf- und sechsstellige Zahlen gibt es keine Kaprekarzahl, das geschilderte Verfahren endet in einem Zyklus mehrerer Zahlen.

Lernhelfer (Duden Learnattack GmbH): "Kaprekarzahlen." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/index.php/schuelerlexikon/mathematik/artikel/kaprekarzahlen (Abgerufen: 10. June 2025, 08:46 UTC)

Suche nach passenden Schlagwörtern

  • Kaprekarzahlen
  • natürliche Zahlen
  • Subtraktion
  • Kaprekar
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Muhammad ibn Musa Al-Chwarizmi

MUHAMMAD IBN MUSA AL-CHWARIZMI, persisch-arabischer Mathematiker
* um 780 Bagdad (heute in Irak)
† um 850

MUHAMMAD IBN MUSA AL-CHWARIZMI (auch AL-KHWARIZMI) war ein persisch-arabischer Mathematiker, der etwa von 780 bis 850 lebte und insbesondere am Hof des Kalifen AL-MANSUR in Bagdad wirkte.
AL-CHWARIZMI führte die indische Ziffernschreibweise und damit das dekadische Positionssystem in den arabischen Kulturkreis ein und beschrieb diese in einem Lehrbuch, das 820 erschien. In diesem Buch findet man vor allem die Gesamtheit der Regeln (Handlungsvorschriften) zum formalen Lösen von Gleichungen – und aus dem Namen des Autors wurde für Handlungsvorschriften der Begriff „Algorithmus“ abgeleitet.

Schriftliche Multiplikation

Das Verfahren der schriftlichen Multiplikation beruht darauf, dass die Multiplikation kommutativ und assoziativ sowie distributiv bezüglich der Addition ist.
Die folgenden Beispiele sollen das Verfahren verdeutlichen.

Gebrochene Zahlen, Historisches

Brüche wurden im Zusammenhang mit Teilungsaufgaben sehr früh verwendet, wesentlich früher als z. B. negative Zahlen. Allerdings ging man über den Nenner 12 kaum hinaus. War es dennoch nötig, kleinere Teile zu berechnen, wurde einfach die Einheit verkleinert.

Natürliche Zahlen, Historisches

Unser dekadisches Positionssystem geht auf den indischen Kulturkreis zurück. Der große arabische Mathematiker AL-CHWARIZMI erklärte und verwendete im Jahr 820 in seinem Lehrbuch der Arithmetik neue indische Ziffern. Im 12. Jahrhundert wurde dieses Buch in Spanien durch ROBERT VON CHESTER übersetzt. Von da aus traten dann die sogenannten arabischen Ziffern ihren Siegeszug an.

Irrationale Zahlen, Historisches

PYTHAGORAS selbst oder einer seiner Schüler entdeckte, dass bei einem Quadrat das Verhältnis von Seitenlänge und Diagonalenlänge nicht als Bruch zweier natürlicher Zahlen dargestellt werden kann. Beide Strecken haben kein gemeinsames Maß, sie sind inkommensurabel.
Diese Entdeckung erschütterte ganz erheblich das Weltbild der Pythagoreer, die angenommen hatten, dass sich jedes Phänomen in der Sprache der natürlichen Zahlen formulieren ließe.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025