Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Mathematik
  3. 5 Gleichungen und Ungleichungen
  4. 5.3 Äquivalentes Umformen von Gleichungen und Ungleichungen
  5. 5.3.2 Äquivalentes Umformen von Gleichungen
  6. Muhammad ibn Musa Al-Chwarizmi

Muhammad ibn Musa Al-Chwarizmi

MUHAMMAD IBN MUSA AL-CHWARIZMI, persisch-arabischer Mathematiker
* um 780 Bagdad (heute in Irak)
† um 850

MUHAMMAD IBN MUSA AL-CHWARIZMI (auch AL-KHWARIZMI) war ein persisch-arabischer Mathematiker, der etwa von 780 bis 850 lebte und insbesondere am Hof des Kalifen AL-MANSUR in Bagdad wirkte.
AL-CHWARIZMI führte die indische Ziffernschreibweise und damit das dekadische Positionssystem in den arabischen Kulturkreis ein und beschrieb diese in einem Lehrbuch, das 820 erschien. In diesem Buch findet man vor allem die Gesamtheit der Regeln (Handlungsvorschriften) zum formalen Lösen von Gleichungen – und aus dem Namen des Autors wurde für Handlungsvorschriften der Begriff „Algorithmus“ abgeleitet.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

MUHAMMAD IBN MUSA AL-CHWARIZMI (manchmal auch AL-KHWARIZMI oder AL-CHARISMI geschrieben) war ein persisch-arabischer Mathematiker, der etwa von 780 (als Geburtsjahre werden mitunter 783 bzw. 787 angegeben) bis etwa 850 lebte.
Er wirkte insbesondere am Hofe des Kalifen AL-MANSUR (auch AL-MA'MUN) in Bagdad.

Seine Leistungen für die Mathematik sind bedeutsam. Er führte die indische Ziffernschreibweise und damit das dekadische Positionssystem in den arabischen Kulturkreis ein und beschrieb diese in seinem Lehrbuch „Hisab al'schabr wal mukábala“ (Das Buch vom Hinüberschaffen und vom Zusammenfassen), welches 820 erschien. Diese Buch wurde im 12. Jahrhundert in Spanien durch ROBERT VON CHESTER übersetzt und von da aus traten die sogenannten arabischen Ziffern (die eigentlich in Indien erfunden worden sind) ihren Siegeszug in ganz Europa an.

Im erwähnten Buch findet man vor allem die Gesamtheit der Regeln zum formalen Lösen von Gleichungen. Diese Regeln (Handlungsvorschriften) bildeten lange Zeit die Grundlage für die Gleichungslehre – und für Handlungsvorschriften wurde der Begriff „Algorithmus“ aus dem Namen von AL-CHWARIZMI abgeleitet.
„Dixit Algoritmi ... “ (So sagt Al-Chwarizmi ...), war ein geflügeltes Wort unter Rechenmeistern im Mittelalter, um die Korrektheit einer Rechnung zu unterstreichen.
Aus dem Namen des Buches „Hisab al'schabr wal mukábala“ leitet sich auch der Begriff Algebra für die Lehre von den Lösungsmethoden algebraischer Gleichungen ab.

Der Algorithmusbegriff spielt in der Informatik eine herausragende Rolle, denn Grundlage für die Entwicklung und Nutzung informationsverarbeitender Technik sind Algorithmen. Für den „Hausgebrauch“ reicht der auf AL-CHWARIZMI basierende Begriff völlig aus: Ein Algorithmus ist eine Verarbeitungsvorschrift, die aus einer endlichen Folge von eindeutig ausführbaren Anweisungen besteht, mit der man eine Vielzahl gleichartiger Aufgaben lösen kann.

Lernhelfer (Duden Learnattack GmbH): "Muhammad ibn Musa Al-Chwarizmi." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/index.php/schuelerlexikon/mathematik/artikel/muhammad-ibn-musa-al-chwarizmi (Abgerufen: 30. June 2025, 09:36 UTC)

Suche nach passenden Schlagwörtern

  • Al-Khwarizmi
  • Al-Charismi
  • Algorithmus
  • Algebra
  • Al-Chwarizmi
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Restklassen

Bei vielen zahlentheoretischen Überlegungen spielen Teilbarkeitsbeziehungen eine Rolle.
So kann man z. B. die Reste untersuchen, die natürliche Zahlen bei der Division durch eine Zahl b lassen.
So können bei der Division durch 5 die Reste 0, 1, 2, 3 und 4 auftreten.
Die Teilmengen K 0 , K 1 , K 2 , K 3 und K 4 der natürlichen Zahlen, die bei der Division durch 5 entstehen, heißen Restklassen modulo 5.

Natürliche Zahlen, Unendlichkeit


In der Menge ℕ der natürlichen Zahlen hat jede Zahl n einen (unmittelbaren) Nachfolger n + 1. Fängt man bei 1 an zu zählen, so kommt man nie zu einem Ende, es gibt unendlich viele natürliche Zahlen. Man sagt auch: Die Menge ℕ der natürlichen Zahlen ist unendlich.

Teilbarkeit

Die natürliche Zahl a teilt die natürliche Zahl b (a | b), wenn es eine natürliche Zahl n gibt, sodass gilt b = n · a. Die Zahl a heißt Teiler von b und b heißt Vielfaches von a.

4 | 24, da 24 = 6 · 4

Sprechweise: 4 teilt 24
oder: 4 ist ein Teiler von 24
oder: 24 ist ein Vielfaches von 4


Zur Ermittlung von Teilern großer Zahlen können Teilbarkeitsregeln verwendet werden.

Geschichte der Zahl Null

Beim Rechnen in Positionssystemen (Stellenwertsystemen) ist die Ziffer 0 zur Markierung entsprechender Stellen notwendig. Deshalb führten die Inder bereits vor dem 8. Jahrhundert ein entsprechendes Symbol (einen Punkt bzw. einen Kreis) ein. In Europa setzte sich die Verwendung der Null erst etwa 500 Jahre später und zudem sehr langsam durch. Erst in der Zeit der Rechenmeister fand sie allgemeine Verwendung.

Größter gemeinsamer Teiler

Ist eine Zahl g sowohl Teiler einer Zahl a als auch Teiler einer Zahl b, so heißt g gemeinsamer Teiler von a und b.
Der größte gemeinsame Teiler wird mit ggT bezeichnet.
Der Begriff „größter gemeinsamer Teiler“ kann auch auf mehr als zwei Zahlen erweitert werden.
Man erhält den ggT, indem man die höchsten Potenzen aller Primfaktoren multipliziert, die in allen Zerlegungen gemeinsam vorkommen.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025