Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Mathematik
  3. 3 Zahlen und Rechnen
  4. 3.1 Natürliche Zahlen
  5. 3.1.2 Rechnen mit natürlichen Zahlen
  6. Schriftliche Subtraktion

Schriftliche Subtraktion

Die Subtraktion ist in der Menge der natürlichen Zahlen ℕ nur ausführbar, wenn der Subtrahend nicht größer als der Minuend ist.
Zur schriftlichen Subtraktion schreibt man die Zahlen (analog zur schriftlichen Addition) untereinander. Man subtrahiert (von rechts beginnend) spaltenweise und notiert das Ergebnis. Ist die Subtraktion nicht ausführbar, erhöht man den Minuenden um einen (oder mehrere) Zehner, die man in der nächsten Spalte zusätzlich subtrahiert.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Schriftliche Subtraktion

Die Subtraktion ist in der Menge der natürliche Zahlen ℕ nur ausführbar, wenn der Subtrahend nicht größer als der Minuend ist.
Eine Zahl d = m – s existiert nur, wenn s ≤ m gilt. Dann ist m = s + d.
Für s = m ist d = 0.

Zur schriftlichen Subtraktion schreibt man die Zahlen (analog zur schriftlichen Addition) untereinander. Man subtrahiert (von rechts beginnend) spaltenweise und notiert das Ergebnis. Ist die Subtraktion nicht ausführbar, erhöht man den Minuenden um einen (oder mehrere) Zehner, die man in der nächsten Spalte zusätzlich subtrahiert.

Es sei von 3486 die Zahl 2192 zu subtrahieren.

 Man schreibt:             Man rechnet:
34861. Spalte (von rechts)2Ergänzung zu 6 ergibt 4
–21922. Spalte (von rechts)9Ergänzung zu 18 ergibt 9
 3. Spalte (von rechts)1+1 = 2Ergänzung zu 4 ergibt 2
 4. Spalte (von rechts)2Ergänzung zu 3 ergibt 1
    

1294

Ergebnis  

Sind mehrere Subtrahenden zu subtrahieren, beginnt man zweckmäßigerweise von unten, addiert die Subtrahenden und ergänzt zum Minuenden, wobei man ggf. einen (oder mehrere) Zehner addiert und in der nächsten Spalte zu den Subtrahenden addiert.

Es seien von 5847 die Zahlen 294, 1036 und 441 zu subtrahieren.

             Man schreibt:                         Man rechnet:
58471. Spalte (von rechts)1 + 6 + 4 = 11Ergänzung zu 17 ergibt 6
– 2942. Spalte (von rechts)1 + 4 + 3 + 9 = 17Ergänzung zu 24 ergibt 7
–10363. Spalte (von rechts)2 + 4 + 0 + 2 = 8Ergänzung zu 8 ergibt 0
–  4414. Spalte (von rechts)1Ergänzung zu 5 ergibt 4
    

4076

Ergebnis  

Die Verfahren des schriftlichen Rechnens machen auch vom Distributivgesetz Gebrauch und gelten völlig analog auch in anderen Positionssystemen.
 

Lernhelfer (Duden Learnattack GmbH): "Schriftliche Subtraktion." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/index.php/schuelerlexikon/mathematik/artikel/schriftliche-subtraktion (Abgerufen: 29. June 2025, 13:55 UTC)

Suche nach passenden Schlagwörtern

  • interaktiv
  • schriftliches Rechnen
  • Mathcad
  • natürliche Zahlen
  • Addition
  • Rechengesetze
  • Subtraktion
  • Minuend
  • Rechenbeispiel
  • Rechenverfahren
  • Subtrahend
  • Berechnungsbeispiel
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Muhammad ibn Musa Al-Chwarizmi

MUHAMMAD IBN MUSA AL-CHWARIZMI, persisch-arabischer Mathematiker
* um 780 Bagdad (heute in Irak)
† um 850

MUHAMMAD IBN MUSA AL-CHWARIZMI (auch AL-KHWARIZMI) war ein persisch-arabischer Mathematiker, der etwa von 780 bis 850 lebte und insbesondere am Hof des Kalifen AL-MANSUR in Bagdad wirkte.
AL-CHWARIZMI führte die indische Ziffernschreibweise und damit das dekadische Positionssystem in den arabischen Kulturkreis ein und beschrieb diese in einem Lehrbuch, das 820 erschien. In diesem Buch findet man vor allem die Gesamtheit der Regeln (Handlungsvorschriften) zum formalen Lösen von Gleichungen – und aus dem Namen des Autors wurde für Handlungsvorschriften der Begriff „Algorithmus“ abgeleitet.

Natürliche Zahlen, Unendlichkeit


In der Menge ℕ der natürlichen Zahlen hat jede Zahl n einen (unmittelbaren) Nachfolger n + 1. Fängt man bei 1 an zu zählen, so kommt man nie zu einem Ende, es gibt unendlich viele natürliche Zahlen. Man sagt auch: Die Menge ℕ der natürlichen Zahlen ist unendlich.

Befreundete Zahlen

Zwei Zahlen heißen befreundet, wenn jede Zahl gleich der Summe der echten Teiler der anderen Zahl ist.
Das kleinste Paar befreundeter Zahlen ist 220 und 284.

Neunerprobe

Da für zwei kongruente Zahlen a 1 und a 2 mit a 1 ≡ r 1 mod b und a 2 ≡ r 2 mod b die Beziehung a 1 + a 2 ≡ r 1 + r 2 mod b gilt, ist der Neunerrest einer Summe gleich der Summe der Neunerreste der Summanden. Man braucht also nur die Reste mod 9 zu untersuchen.
Stimmen die Reste nicht überein, so ist die Rechnung mit Sicherheit falsch. Bei übereinstimmenden Resten ist die Richtigkeit des Resultates zwar nicht sicher, aber wahrscheinlich.
Die Neunerprobe kann auch bei der Subtraktion, Multiplikation und Division angewandt werden.

Vollkommene Zahlen

Eine Zahl, die gleich der Summe ihrer echten Teiler ist, heißt vollkommene Zahl. Die ersten vier vollkommenen Zahlen 6, 28, 496 und 8128 waren bereits den alten Griechen bekannt.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025