Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Mathematik
  3. 8 Stereometrie
  4. 8.4 Prisma und Kreiszylinder
  5. 8.4.1 Begriffe und Formeln
  6. Kreiszylinder

Kreiszylinder

Einen Körper mit zwei zueinander kongruenten und parallelen Kreisen als Grund- und Deckfläche nennt man Kreiszylinder. Liegen die Mittelpunkte der Kreisflächen des Zylinders senkrecht übereinander, so handelt es sich um einen geraden Kreiszylinder. Man kann sich einen geraden Kreiszylinder auch durch Rotation eines Rechtecks um eine seiner Seiten entstanden vorstellen.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Einen Körper mit zwei zueinander kongruenten und parallelen Kreisen als Grund- und Deckfläche nennt man Kreiszylinder. Liegen die Mittelpunkte der Kreisflächen des Zylinders senkrecht übereinander, so handelt es sich um einen geraden Kreiszylinder. Man kann sich einen geraden Kreiszylinder auch durch Rotation eines Rechtecks um eine seiner Seiten entstanden vorstellen.

Bild

Die Mantelfläche eines geraden Kreiszylinders lässt sich abwickeln, d. h. in eine Ebene ausbreiten. Die Mantelfläche ist ein Rechteck mit den Kantenlängen h (Höhe des Kreiszylinders) und u (Umfang der Grundfläche).
Der Oberflächeninhalt eines geraden Kreiszylinders ist die Summe aus dem doppelten Flächeninhalt der Grundfläche und dem Flächeninhalt des Mantels:
A O = 2 A G + A   M
Für den Mantelflächeninhalt gilt:
A M = u ⋅ h = 2 π r ⋅ h
Für den Flächeninhalt der Grundfläche eines Kreiszylinders gilt:
A G = π r 2
A O = 2   π   r 2 + 2   π   r   h = 2   π   r ( r + h )

  • Netz eines Zylinders

Vergrößert man bei einem Prisma mit einem regelmäßigen n-Eck als Grundfläche die Anzahl der Seitenflächen, so nähert es sich immer mehr der Form eines Zylinders an. Das Volumen eines Kreiszylinders kann daher nach der Formel für die Berechnung des Prismenvolumens berechnet werden:
V = A G ⋅ h = π   r 2   h

  • Volumen eines Zylinders

Schneidet man aus einem Kreiszylinder einen zur Achse symmetrischen kleineren Kreiszylinder gleicher Höhe aus, so entsteht ein Hohlzylinder. Für den Oberflächeninhalt eines Hohlzylinders gilt:
A O ,   H o h l z y l i n d e r = A O ,   g r o ß e r   Z y l i n d e r + A M ,   k l e i n e r   Z y l i n d e r − 2 ⋅ A G ,   k l e i n e r   Z y l i n d e r
A O = 2 π ⋅ ( r 2 2   +   r 2 h   +   r 1 h   −   r 1 2 )
Die Formel für das Volumen eines Hohlzylinders lässt sich sowohl aus der Differenz der Volumina der beiden Zylinder als auch über die Flächeninhaltsformel für Kreisringe ableiten:
V = A G ⋅ h = π ( r 2 2 − r 1 2 ) ⋅ h

  • Hohlzylinder
Lernhelfer (Duden Learnattack GmbH): "Kreiszylinder." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/index.php/schuelerlexikon/mathematik/artikel/kreiszylinder (Abgerufen: 20. May 2025, 18:02 UTC)

Suche nach passenden Schlagwörtern

  • interaktiv
  • Mathcad
  • Hohlzylinder
  • Rechenbeispiel
  • Kreiszylinder
  • Oberflächeninhalt
  • Volumen
  • Berechnungsbeispiel
  • Mantelfläche
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Ellipsoid

Ein Ellipsoid ist ein Rotationskörper, der durch die Rotation einer Ellipse um eine ihrer Hauptsachsen entsteht.

Während bei einer Kugel alle drei räumlichen Ausdehnungen gleich sind, sind diese bei einem Ellipsoid verschieden.

Obelisk

Unter den erhaltenen Resten der altägyptischen Kultur gibt es ein besonderes architektonisches Gebilde, den Obelisken. Obelisken sind Steinpfeiler mit einer kleinen Pyramide als Spitze. Der Steinpfeiler hat die Form eines Pyramidenstumpfs. Obelisken waren ein Kultursymbol des Sonnengottes.
In der Mathematik hat der Begriff Obelisk einen anderen Inhalt. Man versteht darunter einen ebenflächigen begrenzten Körper mit rechteckförmigen parallelen Grund- und Deckflächen sowie trapezförmigen Seitenflächen.

Kegelstumpf

Wird ein gerader Kreiskegel von einer parallel zu Grundfläche verlaufenden Ebene geschnitten, so entsteht ein gerader Kegelstumpf. Die parallelen Flächen A G und A D sind zueinander ähnliche Kreise.

Prismatoid

Außer Prismen gibt es weitere ebenflächig begrenzte Körper, die spezielle Bezeichnungen haben. Es sind dies der Prismatoid, der Obelisk oder Ponton und der Keil. Das Volumen dieser Körper lässt sich mit der keplerschen Fassregel berechnen.

Zusammengesetzte Körper

Viele Körper in der Realität (z. B. Gebäude, Werkstücke) lassen sich als Summe oder Differenz geometrischer Körper wie Prismen, Zylinder, Pyramiden und Halbkugeln usw. darstellen. Das Volumen bzw. der Oberflächeninhalt zusammengesetzter Körper berechnet sich dann entsprechend als Summe oder Differenz der Volumina bzw. Oberflächeninhalte der geometrischen Körper.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025