Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Mathematik
  3. 5 Gleichungen und Ungleichungen
  4. 5.3 Äquivalentes Umformen von Gleichungen und Ungleichungen
  5. 5.3.3 Äquivalentes Umformen von Ungleichungen
  6. Ungleichungen, Äquivalentes Umformen

Ungleichungen, Äquivalentes Umformen

Zwei Terme, zwischen denen eines der Zeichen <, >, ≤ , ≥ oder ≠ steht, bilden eine Ungleichung.

Äquivalenzumformungen von Ungleichungen

  • Das Addieren und das Subtrahieren derselben rationalen Zahl auf beiden Seiten der Ungleichung
  • Das Addieren und das Subtrahieren desselben Terms auf beiden Seiten der Ungleichung
  • Das Multiplizieren und das Dividieren mit einer positiven rationalen Zahl auf beiden Seiten der Ungleichung
  • Das Multiplizieren und das Dividieren mit einer negativen rationalen Zahl auf beiden Seiten der Ungleichung mit gleichzeitigem Umdrehen des Relationszeichens
    (Aus < wird >, aus ≤ wird ≥ und umgekehrt.)

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Zwei Terme, zwischen denen eines der Zeichen <, >, ≤ , ≥ , oder ≠ steht, bilden eine Ungleichung.

Das Zeichen ≤ ist zusammengesetzt aus „<“ und „=“. Es bedeutet „ist kleiner oder gleich“.
Das Zeichen ≥ ist zusammengesetzt aus „>“ und „=“.
Es bedeutet „ist größer oder gleich“.

Beispiel:
8 ≤ 15 bedeutet 8 < 15 oder 8 = 15.
8 < 15 ist eine wahre Aussage. 8 = 15 ist eine falsche Aussage.
Die erste der beiden Teilaussagen ist wahr. Deshalb ist 8 ≤ 15 eine wahre Aussage.

Darstellung der Lösungsmenge einer Ungleichung

Beispiel:
Gesucht ist die Lösungsmenge der Ungleichung x + 9 < 15 für x ∈ ℕ .

  • Die Lösungsmenge kann in Worten beschrieben werden:
    Die Lösungsmenge der Ungleichung besteht aus allen natürlichen
    Zahlen, die kleiner sind als 6.
     
  • Die Lösungsmenge kann in der Mengenschreibweise dargestellt werden:
    L = { 0 ;     1 ;     2 ;     3 ;     4 ;     5 }
     
  • Die Lösungsmenge kann auf der Zahlengeraden veranschaulicht werden:

Äquivalenzumformungen von Ungleichungen

  • Das Addieren und das Subtrahieren derselben rationalen Zahl auf beiden Seiten der Ungleichung
  • Das Addieren und das Subtrahieren desselben Terms auf beiden Seiten der Ungleichung
  • Das Multiplizieren und das Dividieren mit einer positiven rationalen Zahl auf beiden Seiten der Ungleichung
  • Das Multiplizieren und das Dividieren mit einer negativen rationalen Zahl auf beiden Seiten der Ungleichung mit gleichzeitigem Umdrehen des Relationszeichens
    (Aus < wird >, aus ≤ wird ≥ und umgekehrt.)


4   ( x + 5 ) + 4 x ≤ 4   ( 4 x − 1 ) + 18 4 x + 20 + 4 x ≤ 16 x − 4 + 18               8 x + 20 ≤ 16 x + 14                               | − 16 x         − 8 x + 20 ≤ 14                                                             | − 20                       − 8 x ≤ − 6                                                           | : ( − 8 )                               x ≥ 3 4                          

Lernhelfer (Duden Learnattack GmbH): "Ungleichungen, Äquivalentes Umformen." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/index.php/schuelerlexikon/mathematik/artikel/ungleichungen-aequivalentes-umformen (Abgerufen: 20. May 2025, 01:28 UTC)

Suche nach passenden Schlagwörtern

  • äquivalente Ungleichungen
  • äquivalent
  • äquivalent zueinander
  • Äquivalenz
  • Ungleichung
  • Mengenschreibweise
  • Zahlengerade
  • Aussage
  • Lösungsmenge
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Bruchterme, Rechnen

Ein Term wird Bruchterm genannt, wenn sein Nenner eine (freie) Variable enthält.
Eine Gleichung bzw. Ungleichung wird Bruchgleichung bzw. Bruchungleichung genannt, wenn sie mindestens einen Bruchterm enthält.
Der Definitionsbereich eines Bruchterms mit einer Variablen ist die Menge aller Zahlen, für die der Term nach ihrem Einsetzen in die Variable definiert ist. Der Definitionsbereich einer Bruchgleichung ist entsprechend die Menge aller Zahlen, für die alle Bruchterme der Bruchgleichung definiert sind.
Ein Bruchterm ist genau dann null, wenn der Zähler null und der Nenner nicht null ist.

Bruchungleichungen, Lösen

Ungleichungen, die Bruchterme enthalten, werden Bruchungleichungen genannt.
Ein Beispiel für eine Bruchungleichung ist: x + 2 x − 5 > 0
Um alle Lösungen dieser Bruchungleichung zu finden, müssen zwei Fälle unterschieden werden, denn es gibt zwei Möglichkeiten, damit ein Bruch größer als null ist:

  1. Der Zähler und der Nenner sind größer als null.
  2. Der Zähler und der Nenner sind kleiner als null.

Beide Fälle müssen untersucht werden, um alle Lösungen der Bruchungleichung zu finden.

Äquivalenzumformungen

Gleichungen bzw. Ungleichungen mit demselben Grundbereich, die die gleiche Lösungsmenge haben, heißen zueinander äquivalent.

Die Lösungsmenge einer Gleichung ändert sich nicht, wenn

  • die Seiten einer Gleichung vertauscht werden,
  • auf beiden Seiten einer Gleichung derselbe Term addiert oder subtrahiert wird,
  • beide Seiten einer Gleichung mit demselben Term multipliziert werden,
  • beide Seiten einer Gleichung durch denselben Term dividiert werden.

Beim Multiplizieren bzw. Dividieren mit einem bzw. durch einen Term darf dieser für keine Zahl aus der Grundmenge den Wert null annehmen.

Bruchgleichungen, Lösen

Ein Term wird Bruchterm genannt, wenn sein Nenner eine Variable enthält.
Eine Gleichung bzw. Ungleichung wird Bruchgleichung bzw. Bruchungleichung genannt, wenn sie mindestens einen Bruchterm enthält.

Bruchgleichungen lassen sich folgendermaßen lösen:

  1. Es wird der Hauptnenner der Bruchgleichung z. B. durch
    Primfaktorzerlegung oder durch Faktorisierung bestimmt.
  2. Beide Seiten der Bruchgleichung werden mit dem Hauptnenner multipliziert.
  3. Auf beiden Seiten werden die Brüche gekürzt.
  4. Die neue Gleichung wird mit den bekannten Schritten für
    äquivalentes Umformen gelöst.
  5. Es muss geprüft werden, ob die Lösung der neuen Gleichung auch zur Definitionsmenge der Bruchgleichung gehört.

Gleichungen, grafisches Lösen

Gleichungen, für die exakte Lösungsverfahren nicht bekannt oder zu zeitaufwändig sind, lassen sich oft mit hinreichender Genauigkeit grafisch lösen. Dabei geht man von der zu lösenden Bestimmungsgleichung zur entsprechenden Funktionsgleichung über, stellt (unter Verwendung eines Taschenrechners) eine Wertetabelle auf und zeichnet den Graphen der Funktion. Die Abszissen der Schnittpunkte des Funktionsgraphen mit der x-Achse, also die Nullstellen, sind die Lösungen der Gleichung. Man liest sie näherungsweise ab. Die Genauigkeit beim Ablesen kann verbessert werden, wenn die Funktion in einem immer engeren Intervall um die Nullstelle herum dargestellt wird.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025