Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Mathematik
  3. 8 Stereometrie
  4. 8.8 Zusammengesetzte Körper
  5. 8.8.0 Zusammengesetzte Körper
  6. Zusammengesetzte Körper

Zusammengesetzte Körper

Viele Körper in der Realität (z. B. Gebäude, Werkstücke) lassen sich als Summe oder Differenz geometrischer Körper wie Prismen, Zylinder, Pyramiden und Halbkugeln usw. darstellen. Das Volumen bzw. der Oberflächeninhalt zusammengesetzter Körper berechnet sich dann entsprechend als Summe oder Differenz der Volumina bzw. Oberflächeninhalte der geometrischen Körper.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Viele Körper in der Realität (z. B. Gebäude, Werkstücke) lassen sich als Summe oder Differenz geometrischer Körper wie Prismen, Zylinder, Pyramiden und Halbkugeln usw. darstellen. Das Volumen bzw. der Oberflächeninhalt zusammengesetzter Körper berechnet sich dann entsprechend als Summe oder Differenz der Volumina bzw. der Oberflächeninhalte der geometrischen Körper.

Beispiel:

Bild

Um das Volumen des Werkstücks zu berechnen, ist die Differenz aus dem Volumen des Quaders und den Volumina der zylindrischen Bohrungen zu bestimmen.

G e s u c h t :     V W e r k s t ü c k G e g e b e n : Q u a d e r :       a = 100   m m ,   b = 40   m m ,   c = 50   m m           Z y l i n d e r :       d = 32   m m ,     h = 40   m m   L ö s u n g :   V Q = a ⋅ b ⋅ c            V Q = 100   m m ⋅ 40   m m ⋅ 50   m m             V Q = 200   000   m m 3             V Z = π   r   2 ⋅ h             V Z = π ( 16   m m ) 2 ⋅     40   m m             V Z ≈ 32   000   m m 3                   V W e r k s t ü c k = V Q − 2 V Z           V W e r k s t ü c k = 200   000     m m 3 −     64   000   m m 3           V W e r k s t ü c k ≈ 136   000     m m 3

Antwort: Das Werkstück hat ein Volumen von etwa 136000 m m   3 bzw. 136 c m   3 .

Lernhelfer (Duden Learnattack GmbH): "Zusammengesetzte Körper." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/index.php/schuelerlexikon/mathematik/artikel/zusammengesetzte-koerper (Abgerufen: 20. May 2025, 20:36 UTC)

Suche nach passenden Schlagwörtern

  • zusammengesetzter Körper
  • Oberflächeninhalt
  • Volumen
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Normalbilder

Die Bilder bei einer senkrechten Parallelprojektion heißen Normalbilder. Grund- und Aufriss eines Körpers sind spezielle Normalbilder. Meist wird eine spezielle Lage des Körpers gewählt, bei der möglichst viele Begrenzungsflächen parallel zu einer der Bildebenen sind. Da dann viele Kanten senkrecht zu einer Bildebene sind und dem zufolge als Punkt abgebildet werden, sind die Bilder oft nicht sehr anschaulich. So sind der Aufriss und Grundriss eines Würfels jeweils ein Quadrat.

Regelmäßige Polyeder

Die fünf regulären Polyeder haben in der Geschichte der Mathematik, der Philosophie und der Astronomie eine Rolle gespielt. Der griechische Philosoph PLATON und der Mathematiker und Astronom JOHANNES KEPLER suchten nach Zusammenhängen der regulären Polyeder mit realen Erscheinungen in der Welt, so etwa den Bahnen der Planeten. Nach PLATON heißen die fünf regulären Polyeder auch platonische Körper.

Prisma

Ein Körper heißt gerades Prisma, wenn er von zwei zueinander kongruenten und parallelen n-Ecken und von n Rechtecken begrenzt wird. Die n-Ecke heißen Grundfläche und Deckfläche des Prismas. Der Abstand zwischen Grund- und Deckfläche ist die Höhe des Prismas.

Pyramide

Ein Körper heißt Pyramide, wenn er von einem Dreieck, Viereck, Fünfeck usw. als Grundfläche und von Dreiecken als Seitenflächen begrenzt wird, die einen Punkt S gemeinsam haben. Der Punkt S heißt Spitze der Pyramide. Der Abstand der Spitze der Pyramide von der Grundfläche heißt Höhe der Pyramide. Der Fußpunkt der Höhe ist der Fußpunkt des Lotes von der Spitze in die Grundfläche. Die Kanten der Grundfläche nennt man Grundkanten, die Kanten der Seitenfläche heißen Seitenkanten.

Pyramidenstumpf

Wird eine Pyramide durch eine zur Grundfläche der Pyramide parallele Ebene geschnitten, so entstehen ein Pyramidenstumpf und die zugehörige Ergänzungspyramide.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025