Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Physik Abitur
  3. 2 Mechanik
  4. 2.2 Kinematik
  5. 2.2.4 Gleichmäßig beschleunigte geradlinige Bewegungen
  6. Allgemeine Bewegungsgesetze

Allgemeine Bewegungsgesetze

Bewegungen können auf unterschiedlicher Bahnen in verschiedener Art erfolgen: Sie können geradlinig oder krummlinig verlaufen, können gleichförmig, gleichmäßig beschleunigt oder ungleichmäßig beschleunigt sein. Für alle speziellen Fälle lassen sich die entsprechenden Bewegungsgesetze formulieren.
Man kann die Bewegungsgesetze aber auch so allgemein formulieren, dass fast alle Spezialfälle aus ihnen ableitbar sein. Diese allgemeinen Bewegungsgesetze sind in dem Beitrag dargestellt und erläutert.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Die allgemeinen Bewegungsgesetze müssen so formuliert sein, dass zum einen der vektorielle Charakter von Weg, Geschwindigkeit und Beschleunigung berücksichtigt wird und darüber hinaus auch Anfangsweg und Anfangsgeschwindigkeit in die Betrachtungen einbezogen werden. Notwendig ist auch die Einbeziehung der Differenzial- und Integralrechnung.

Das Weg-Zeit-Gesetz

Beim Weg-Zeit-Gesetz ist zu beachten, dass die Geschwindigkeit eine Funktion der Zeit sein kann und dass eine Anfangsgeschwindigkeit und ein Anfangsweg zu berücksichtigen sind, die auch verschiedene Richtungen haben können. Das allgemeine Weg-Zeit-Gesetz lautet:

s → = ∫ t 1 t 2 v → ( t )   d t + v → 0 ⋅ t + s → 0 v → Geschwindigkeit v → 0 Anfangsgeschwindigkeit bei t = 0 s → 0 Anfangsweg bei t = 0

Haben Geschwindigkeit, Anfangsgeschwindigkeit und Anfangsweg die gleiche Richtung, dann kann man auch die Beträge schreiben. Liegen entgegengesetzte Richtungen vor, so wird das in der Betragsschreibweise durch ein Minuszeichen zum Ausdruck gebracht.

Beispiel: Geschwindigkeit und Anfangsweg haben die gleiche Richtung, die Anfangsgeschwindigkeit ist entgegengesetzt gerichtet. Dann lautet das Weg-Zeit-Gesetz:
s = ∫ 0 t v ( t )   d t − v 0 ⋅ t + s 0
Spezialfälle lassen sich leicht ableiten, z.B. das Weg-Zeit-Gesetz für eine gleichmäßig beschleunigte Bewegung (a = konstant) ohne Anfangsweg und Anfangsgeschwindigkeit:

Mit s 0 = 0 und v 0 = 0 sowie mit v ( t ) = a ⋅ t erhält man: s = ∫ 0 t a ⋅ t   d t = [ a ⋅ t 2 2 ] 0 t = a 2 ⋅ t 2

Das Geschwindigkeit-Zeit-Gesetz

Das allgemeine Geschwindigkeit-Zeit-Gesetz lässt sich in differenzieller Schreibweise oder in Integralschreibweise formulieren. Es lautet in den beiden Schreibweisen:
v → = d s → d t = s · oder v → = ∫ t 1 t 2 a → ( t )   d t + v → 0 s Weg t Zeit a Beschleunigung v 0 Anfangsgeschwindigkeit

Der Punkt über dem s wird „s Punkt“ gesprochen und bedeutet in der Physik immer die 1. Ableitung der betreffenden Größe nach der Zeit. Welche Form zu bevorzugen ist, hängt von den gegebenen Bedingungen ab, wie die nachfolgenden Beispiele zeigen.

Beispiel 1:
Gegeben ist folgendes Weg-Zeit-Gesetz:
s = a 2 t 2 − v 0 ⋅ t
Wie lautet das betreffende Geschwindigkeit-Zeit-Gesetz?
Dieses Gesetz ergibt sich als 1. Ableitung des Weg-Zeit-Gesetzes nach der Zeit:
v = d s d t v = d ( a 2 ⋅ t 2 − v 0 ⋅ t ) d t v = a ⋅ t − v 0

Beispiel 2:
Eine Bewegung erfolgt mit einer konstanten Beschleunigung a. Zum Zeitpunkt

t 1 = 0     beträgt die Anfangsgeschwindigkeit v 0 . Die Richtung von v 0 stimmt mit der von a überein . Wie groß ist die Geschwindigkeit zum Zeitpunkt t 2 = t ?
Kennt man Beschleunigung und Anfangsbedingungen, dann kann man das Geschwindigkeit-Zeit-Gesetz durch Integration ermitteln:

v = ∫ 0 t a   d t + v 0 v = a ⋅ t + v 0

Das Beschleunigung-Zeit-Gesetz

Beim Beschleunigung-Zeit-Gesetz gibt es eine allgemeine differenzielle Schreibweise, die sich auf die Geschwindigkeit oder den Weg bezieht:
a → = d v → d t = v · oder a → = d 2 s → d t 2 = s · ·

Die Beschleunigung ist also die 1. Ableitung der Geschwindigkeit nach der Zeit oder die 2. Ableitung des Weges nach der Zeit. Kennt man für eine Bewegung das Weg-Zeit-Gesetz oder das Geschwindigkeit-Zeit-Gesetz, so kann man die Beschleunigung ermitteln, indem man die entsprechende Ableitung bildet.


Lernhelfer (Duden Learnattack GmbH): "Allgemeine Bewegungsgesetze." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/index.php/schuelerlexikon/physik-abitur/artikel/allgemeine-bewegungsgesetze (Abgerufen: 24. May 2025, 01:25 UTC)

Suche nach passenden Schlagwörtern

  • Berechnung
  • Weg-Zeit-Gesetz
  • Weg
  • Geschwindigkeit
  • Differenzialrechnung
  • Beschleunigung
  • Differentialrechnung
  • Ableitung
  • Anfangsweg
  • Anfangsgeschwindigkeit
  • allgemeine Bewegungsgesetze
  • Beschleunigung-Zeit-Gesetz
  • Rechenbeispiel
  • Integralrechnung
  • Geschwindigkeit-Zeit-Gesetz
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Geladene Teilchen in elektrischen Feldern

Auf ein geladenes Teilchen wirkt im elektrischen Feld eine Kraft, die zur Beschleunigung des Ladungsträgers führt. Die Bahnkurve des Teilchens ist abhängig von der Richtung der Anfangsgeschwindigkeit. Bei einer Bewegung in Richtung oder entgegen der Richtung der Feldlinien erfolgt eine gleichmäßig beschleunigte Bewegung. Das wird z.B. genutzt, um schnelle Elektronen (einen Elektronenstrahl) zu erzeugen. Verläuft die Bewegung senkrecht zu den Feldlinien eines homogenen Feldes, dann bewegen sich die Ladungsträger auf einer parabelförmigen Bahn. Diese Ablenkung von der ursprünglichen geradlinigen Bewegung wird in Elektronenstrahlröhren zur Erzeugung von Bildern (z. B. bei Oszillografen) genutzt.

Die Geschwindigkeit

Die Geschwindigkeit gibt an, wie schnell oder wie langsam sich ein Körper bewegt. Sie ist eine vektorielle physikalische Größe und hat damit in jedem Punkt der Bewegung eines Körpers einen bestimmten Betrag und eine bestimmte Richtung.

Formelzeichen:v
Einheiten:

ein Meter je Sekunde (1 m/s)
ein Kilometer je Stunde (1 km/h)

Die Geschwindigkeit eines Körpers kann in unterschiedlicher Weise bestimmt werden. Dabei st zwischen der Durchschnittsgeschwindigkeit und der Augenblicksgeschwindigkeit zu unterscheiden.

Bewegungsarten und Bahnformen

Bewegungen von Körpern unterscheiden sich nicht nur danach, wie sie sich längs einer Bahn bewegen, sondern auch nach der Form ihrer Bahn. Nach der Art der Bewegung (Bewegungsart) wird differenziert zwischen

  • unbeschleunigten Bewegungen ( a → = 0 → ) und
  • beschleunigten Bewegungen ( a → ≠ 0 → ) .

Bei den beschleunigten Bewegungen wiederum kann man unterscheiden zwischen gleichmäßig beschleunigten Bewegungen ( a → = konstant ) und ungleichmäßig beschleunigten Bewegungen. Nach der Form der Bahn (Bahnform) wird unterschieden zwischen

  • geradlinige Bewegungen und
  • krummlinige Bewegungen.

Eine spezielle krummlinige Bewegung ist die Kreisbewegung. Sie ist zu unterscheiden von der Drehbewegung eines Körpers um eine Achse.

Beschleunigung-Zeit-Diagramme

In einem Beschleunigung-Zeit-Diagramm ist für die Bewegung eines Körpers der Zusammenhang zwischen seiner Beschleunigung a und der Zeit t dargestellt. Ein a-t-Diagramm für eine Bewegung mit konstantem Betrag der Geschwindigkeit (gleichförmige geradlinige Bewegung, gleichförmige Kreisbewegung) unterscheidet sich deutlich von einem a-t-Diagramm für eine Bewegung mit konstantem Betrag der Beschleunigung (gleichmäßig beschleunigte geradlinige Bewegung, freier Fall) und dieses wiederum von a-t-Diagrammen für ungleichmäßig beschleunigte Bewegungen.
Im a-t-Diagramm hat die Fläche unter dem Graphen eine physikalische Bedeutung. Sie ist gleich der Geschwindigkeit.

Gleichförmige geradlinige Bewegungen

Eine gleichförmige geradlinige Bewegung eines Körpers liegt vor, wenn sich der Körper längs einer geraden Bahn ständig mit der gleichen Geschwindigkeit bewegt, wenn also gilt: v → = konstant .
Bei einer solchen Bewegung sind sowohl der Betrag als auch die Richtung der Geschwindigkeit konstant. Ein Beispiel für eine gleichförmige Bewegung ist ein Zug, der mit einer konstanten Geschwindigkeit eine gerade Strecke entlangfährt.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025