Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Physik
  3. 2 Mechanik
  4. 2.3 Kräfte und ihre Wirkungen
  5. 2.3.4 Die Radialkraft
  6. Radialbeschleunigung

Radialbeschleunigung

Die Radialbeschleunigung gibt an, wie schnell sich bei einer Kreisbewegung die Richtung der Geschwindigkeit ändert.
Formelzeichen: a r
Einheit: ein Meter je Quadratsekunde ( 1 m s 2 )

Die Radialbeschleunigung kann mit den folgenden Gleichungen berechnet werden:

a r = v 2 r        a r = 4 π 2 ⋅ r T 2        a r = 4 π 2 ⋅ r ⋅ n 2

Die Radialbeschleunigung ist eine gerichtete (vektorielle) Größe, die immer zum Zentrum der Kreisbewegung gerichtet ist. Sie ist deutlich zu unterscheiden von einer Beschleunigung längs der Bahn des Körpers (Bahnbeschleunigung oder Beschleunigung).

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Die Radialbeschleunigung gibt an, wie schnell sich bei einer Kreisbewegung die Geschwindigkeit ändert.
Formelzeichen: a r
Einheit: ein Meter je Quadratsekunde ( 1 m s 2 )
Die Radialbeschleunigung kann mit den folgenden Gleichungen berechnet werden:

a r = v 2 r        a r = 4 π 2 ⋅ r T 2        a r = 4 π 2 ⋅ r ⋅ n 2

 

v

Geschwindigkeit des Körpers auf der Kreisbahn
  r Radius der Kreisbahn
  T Umlaufzeit
  n Drehzahl

Die Radialbeschleunigung ist eine gerichtete (vektorielle) Größe, die immer zum Zentrum der Kreisbewegung gerichtet ist. Sie ist deutlich zu unterscheiden von einer Beschleunigung längs der Bahn des Körpers (Bahnbeschleunigung oder Beschleunigung).
Kennt man die Radialbeschleunigung für einen Körper, so kann man auch die Radialkraft bestimmen. Umgekehrt kann man bei bekannter Masse des Körpers aus der Radialkraft die Radialbeschleunigung ermitteln. Dabei wird das newtonsche Grundgesetz angewendet. Setzt man in die Gleichung

F = m ⋅ a

für die Beschleunigung a die Radialbeschleunigung ein, so erhält man die Gleichungen für die Radialkraft:

F r = m ⋅ v 2 r       F r = m ⋅ 4 π 2 ⋅ r T 2       F r = m ⋅ 4 π 2 ⋅ r ⋅ n 2

  • Radialbeschleunigung
Lernhelfer (Duden Learnattack GmbH): "Radialbeschleunigung." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/index.php/schuelerlexikon/physik/artikel/radialbeschleunigung (Abgerufen: 22. May 2025, 08:27 UTC)

Suche nach passenden Schlagwörtern

  • Bahnbeschleunigung
  • gerichtete (vektorielle) Größe
  • Radialbeschleunigung
  • Radialkraft
  • newtonsches Grundgesetz
  • Kreisbewegung
  • Beschleunigung
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Allgemeine Bewegungsgesetze

Bewegungen können auf unterschiedlicher Bahnen in verschiedener Art erfolgen: Sie können geradlinig oder krummlinig verlaufen, können gleichförmig, gleichmäßig beschleunigt oder ungleichmäßig beschleunigt sein. Für alle speziellen Fälle lassen sich die entsprechenden Bewegungsgesetze formulieren.
Man kann die Bewegungsgesetze aber auch so allgemein formulieren, dass fast alle Spezialfälle aus ihnen ableitbar sein. Diese allgemeinen Bewegungsgesetze sind in dem Beitrag dargestellt und erläutert.

Grundgesetz der Dynamik der Rotation

Bei der Translation gilt zwischen der Kraft F, der Masse m und der Beschleunigung a der grundlegende Zusammenhang F → = m ⋅ a → , das newtonsche Grundgesetz. Es wird auch als Grundgesetz der Dynamik der Translation bezeichnet. Für die Rotation starrer Körper gibt es ein analoges Gesetz, das Grundgesetz der Dynamik der Rotation. Es lautet:
Für den Zusammenhang zwischen dem an einem Körper angreifenden Drehmoment, seinem Trägheitsmoment und der Winkelbeschleunigung gilt die Gleichung:
M → = J ⋅ α → M Drehmoment J Trägheitsmoment α Winkelbeschleunigung

Bewegungsarten und Bahnformen

Bewegungen von Körpern unterscheiden sich nicht nur danach, wie sie sich längs einer Bahn bewegen, sondern auch nach der Form ihrer Bahn. Nach der Art der Bewegung (Bewegungsart) wird differenziert zwischen

  • unbeschleunigten Bewegungen ( a → = 0 → ) und
  • beschleunigten Bewegungen ( a → ≠ 0 → ) .

Bei den beschleunigten Bewegungen wiederum kann man unterscheiden zwischen gleichmäßig beschleunigten Bewegungen ( a → = konstant ) und ungleichmäßig beschleunigten Bewegungen. Nach der Form der Bahn (Bahnform) wird unterschieden zwischen

  • geradlinige Bewegungen und
  • krummlinige Bewegungen.

Eine spezielle krummlinige Bewegung ist die Kreisbewegung. Sie ist zu unterscheiden von der Drehbewegung eines Körpers um eine Achse.

Kräfte und ihre Messung

Der Begriff Kraft wird im Alltag und in der Physik in vielfältiger Weise verwendet. Während der Alltagsbegriff mit unterschiedlichen Begriffsinhalten genutzt wird, ist die physikalische Größe Kraft eindeutig definiert:
Die Kraft gibt an, wie stark ein Körper bewegt oder verformt wird. Sie ist eine Wechselwirkungsgröße und eine vektorielle (gerichtete) Größe. Die Wirkung einer Kraft ist abhängig von ihrem Betrag, ihrer Richtung und ihrem Angriffspunkt.


Formelzeichen: F → Einheit: ein Newton (1 N) 1 N = 1 kg ⋅ m s 2
Man unterscheidet u.a. elektrische Kräfte, magnetische Kräfte, Reibungskräfte, Druckkräfte, Radialkräfte, Gewichtskräfte, Schubkräfte, Spannkräfte und Zugkräfte, Adhäsionskräfte und Kohäsionskräfte, innere Kräfte und äußere Kräfte voneinander.

Fallbeschleunigung oder Ortsfaktor

Die Beschleunigung, die bei einem frei fallenden Körper auftritt, wenn der Luftwiderstand vernachlässigbar klein ist, wird als Fallbeschleunigung g bezeichnet. Ihr mittlerer Wert für die Erdoberfläche beträgt 9,81 m/s².
Die Fallbeschleunigung ist abhängig von dem Ort, an dem man sich befindet. Sie wird deshalb auch als Ortsfaktor bezeichnet. Der Ortsfaktor gibt an, wie groß der Quotient aus der Gewichtskraft eines Körpers und seiner Masse am jeweiligen Ort ist. Es gilt g = 9,81 N/kg.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025