Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Physik
  3. 2 Mechanik
  4. 2.4 Mechanische Arbeit, Energie und Leistung
  5. 2.4.1 Die mechanische Arbeit
  6. Verformungsarbeit

Verformungsarbeit

Verformungsarbeit wird verrichtet, wenn auf einen Körper eine Kraft wirkt und er dadurch seine Form ändert. Eine spezielle Form der Verformungsarbeit tritt auf, wenn eine elastische Feder gedehnt wird. Für diesen Fall kann die Arbeit mit den folgenden Gleichungen berechnet werden:

W F = 1 2 F E ⋅ s W F = 1 2 D ⋅ s 2                              F E         Endkraft (Kraft bei der Ausdehnung  s )                              s          Dehnung der Feder (Weg)                              D         Federkonstante

Die Verformungsarbeit kann auch aus einem Kraft-Weg-Diagramm (F-s-Diagramm) ermittelt werden. Die Verformungsarbeit wird wie die anderen Arten mechanischer Arbeit in den Einheiten ein Newtonmeter (1 Nm) und ein Joule (1 J) gemessen.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Die Verformungsarbeit ist eine Art der mechanischen Arbeit und wie jede Arbeit eine Prozessgröße. Verformungsarbeit wird z. B. verrichtet, wenn man einen Ast biegt, eine Feder oder einen Impander verformt. Die Arbeit zum Verformen einer Feder wird auch als Federspannarbeit bezeichnet.
Die dabei wirkende Kraft ist gleich der Kraft, mit der der Körper aufgrund seines Aufbaus wirkt. Der zurückgelegte Weg ergibt sich aus der Stärke der Verformung.
Bei einer elastischen Feder ist der Weg gleich der Dehnung der Feder. Beim Dehnen einer Feder ist die erforderliche Kraft nicht konstant. Sie nimmt mit der Dehnung der Feder zu, wobei für den elastischen Bereich das hookesche Gesetz gilt:

s ~ F

Somit kann man nicht die Gleichung W = F ⋅ s anwenden. Die Federspannarbeit lässt sich aber mit einer mittleren Kraft berechnen, die wegen der Gültigkeit des hookeschen Gesetzes gleich der halben Endkraft ist. Es gilt für die Federspannarbeit:

W F = 1 2 F E ⋅ s W F = 1 2 D ⋅ s 2                              F E         Endkraft (Kraft bei der Ausdehnung  s )                              s          Dehnung der Feder (Weg)                              D         Federkonstante

  • H. Mahler, Fotograf, Berlin

Stellt man die zum Dehnen einer Feder erforderliche Kraft in Abhängigkeit von der Dehnung der Feder dar, so erhält man eine Gerade (Bild 2): Die Dehnung der Feder ist der wirkenden Kraft proportional. Je größer die Dehnung der Feder ist, desto größer ist auch die erforderliche Kraft. Aus einem solchen F-s-Diagramm kann man auch die Federspannarbeit ermitteln: Die Federspannarbeit ist gleich der Fläche unter dem Graphen, wobei die auf den Achsen aufgetragenen Einheiten zu berücksichtigen sind.
Man kann mithilfe dieses Verfahrens auch eine beliebige Verformungsarbeit bestimmen, wenn man den Verlauf des Graphen kennt. Auch bei einem beliebigen Kurvenverlauf des Graphen ist die Fläche unter ihm gleich der verrichteten mechanischen Arbeit.

Beim Verrichten von Verformungsarbeit und speziell von Federspannarbeit vergrößert sich die in der Feder gespeicherte Energie. Es ist eine spezielle Form von potenzieller Energie. Allgemein gilt:
Die beim Dehnen einer Feder verrichtete Federspannarbeit ist genau so groß wie die dann in der Feder gespeicherte potenzielle Energie (Bild 3):

W F = Δ E p o t

Lernhelfer (Duden Learnattack GmbH): "Verformungsarbeit." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/index.php/schuelerlexikon/physik/artikel/verformungsarbeit (Abgerufen: 20. May 2025, 20:46 UTC)

Suche nach passenden Schlagwörtern

  • Berechnungstool
  • Art der mechanischer Arbeit
  • Prozessgröße
  • zurückgelegter Weg
  • Feder
  • potenzielle Energie
  • hookesches Gesetz
  • Kraft
  • Verformungsarbeit
  • F-s-Diagramm
  • Federspannarbeit
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Erster Hauptsatz der Thermodynamik

Der 1. Hauptsatz der Thermodynamik ist der Energieerhaltungssatz, formuliert für thermodynamische Prozesse. Die heute bekannte mathematische Formulierung des 1. Hauptsatzes der Thermodynamik stammt von RUDOLF CLAUSIUS und wurde von ihm um 1850 so formuliert:

Die einem thermodynamischen System zugeführte Wärme ist gleich der Summe aus der Änderung der inneren Energie des Systems und der von ihm verrichteten mechanischen Arbeit.

Δ U = W + Q Δ U Änderung der inneren Energie des Systems W vom System oder am System verrrichtet mechanische Arbeit (Volumenarbeit) Q vom System aufgenommene oder abgegebene Wärme

Eine andere übliche Formulierung des 1. Hauptsatzes der Thermodynamik lautet:
Es ist unmöglich, eine Perpetuum mobile 1. Art zu konstruieren.

Die Wärme

Die Wärme ist eine relativ komplizierte physikalische Größe, deren Wesen erst im Laufe vieler Jahrzehnte geklärt werden konnte. Heute kann man klar definieren: Die Wärme gibt an, wie viel thermische Energie von einem Körper auf einen anderen Körper übertragen wird.

 Formelzeichen:Q
 Einheit:ein Joule (1 J)

Die Wärme ist wie die mechanische Arbeit eine Prozessgröße, da sie den Prozess der Energieübertragung zwischen Körpern beschreibt.

Otto von Guericke

* 20.11.1602 Magdeburg
† 11.05.1686 Hamburg

Er war ein Naturforscher und Bürgermeister von Magdeburg, entwickelte die Luftpumpe, untersuchte die Ausbreitung von Licht und Schall im Vakuum, bestimmte die Dichte der Luft und entdeckte die elektrische Abstoßung von gleichnamig geladenen Körpern.

Blaise Pascal

* 19.02.1623 Clermont/Auvergne
† 19.08.1662 Paris

Er war ein französischer Mathematiker, Naturforscher und Philosoph, schrieb bereits mit 17 Jahren eine Abhandlung über Kegelschnitte und konstruierte Additions- und Subtraktionsmaschinen. Zu seinen physikalischen Forschungen gehört die Untersuchung der Abhängigkeit des Luftdrucks von der Höhe.
Nach BLAISE PASCAL sind die Einheit des Druckes (ein Pascal, 1 Pa) und die von N. WIRTH entwickelte Programmiersprache benannt.

Robert Hooke

* 18.07.1635 Freshwater
† 03.03.1703 London

Er war ein bedeutender englischer Naturforscher, fand das nach ihm benannte Gesetz über die Proportionalität zwischen Dehnung und Belastung bei einer Spiralfeder, entdeckte die Korkzellen, konstruierte ein Teleskop, ein Quecksilberbarometer und einen selbst registrierenden Regenmesser.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025