Direkt zum Inhalt

20 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Energieerhaltungssatz der Mechanik

In einem abgeschlossenen Bereich (abgeschlossenen System) gilt unter der Bedingung, dass keine Umwandlung von mechanischer Energie in andere Energieformen erfolgt:

Die Summe aus potenzieller und kinetischer Energie eines Körpers ist konstant.

E pot + E kin = konstant     oder Δ ( E pot + E kin ) = 0

Der Energieerhaltungssatz der Mechanik ist ein spezieller Fall des allgemeinen Energieerhaltungssatzes.

Artikel lesen

Mechanische Energie

Mechanische Energie ist die Fähigkeit eines Körpers, aufgrund seiner Lage oder seiner Bewegung mechanische Arbeit zu verrichten, Wärme abzugeben oder Licht auszusenden:

Formelzeichen:
Einheiten:
 
E mech
ein Joule (1 J)
ein Newtonmeter (1 Nm)


Spezielle Formen mechanischer Energie sind die potenzielle Energie und die kinetische Energie.

Artikel lesen

Potenzielle Energie

Potenzielle Energie (Energie der Lage) ist die Fähigkeit eines Körpers, aufgrund seiner Lage mechanische Arbeit zu verrichten, Wärme abzugeben oder Licht auszusenden.

Formelzeichen:
Einheiten:
 
E pot
ein Joule (1 J)
ein Newtonmeter (1 Nm)


Potenzielle Energie ist eine spezielle Form mechanischer Energie.

Artikel lesen

Energie und Arbeit

Die physikalischen Größen Energie und Arbeit hängen eng miteinander zusammen. Wird von einem Körper oder an einem Körper Arbeit verrichtet, so ändert sich dessen Energie. Allgemein gilt:

Die von einem Körper oder an einem Körper verrichtete Arbeit ist gleich der Änderung seiner Energie.

Artikel lesen

Hubarbeit

Hubarbeit wird verrichtet, wenn ein Körper durch eine Kraft gehoben wird. Ist die Kraft konstant und wirkt sie in Richtung des Weges, so gilt für die Hubarbeit:

W H = F G ⋅ h    oder W H = m ⋅ g ⋅ h                           F G      Gewichtskraft des Körpers                           h        Höhe , um die der Körper                                    gehoben wird (Weg)                           m       Masse des Körpers                           g        Fallbeschleunigung (Ortsfaktor)

Die Hubarbeit wird wie die anderen Arten mechanischer Arbeit in den Einheiten ein Newtonmeter (1 Nm) und ein Joule (1 J) gemessen.

Artikel lesen

Verformungsarbeit

Verformungsarbeit wird verrichtet, wenn auf einen Körper eine Kraft wirkt und er dadurch seine Form ändert. Eine spezielle Form der Verformungsarbeit tritt auf, wenn eine elastische Feder gedehnt wird. Für diesen Fall kann die Arbeit mit den folgenden Gleichungen berechnet werden:

W F = 1 2 F E ⋅ s W F = 1 2 D ⋅ s 2                              F E         Endkraft (Kraft bei der Ausdehnung  s )                              s          Dehnung der Feder (Weg)                              D         Federkonstante

Die Verformungsarbeit kann auch aus einem Kraft-Weg-Diagramm (F-s-Diagramm) ermittelt werden. Die Verformungsarbeit wird wie die anderen Arten mechanischer Arbeit in den Einheiten ein Newtonmeter (1 Nm) und ein Joule (1 J) gemessen.

Artikel lesen

Energie und Arbeit

Die physikalischen Größen Energie und Arbeit hängen eng miteinander zusammen. Wird von einem System oder an einem System Arbeit verrichtet, so ändert sich dessen Energie. Allgemein gilt:

Die von einem System oder an einem System verrichtete Arbeit ist gleich der Änderung seiner Energie.

Artikel lesen

Arten mechanischer Arbeit

Mechanische Arbeit wird verrichtet, wenn ein Körper oder ein System durch eine einwirkende Kraft bewegt oder verformt wird. Dabei unterscheidet man traditionsgemäß je nach dem betreffenden Vorgang zwischen verschiedenen Arten der Arbeit. Wichtige Arten sind

 
  • die Arbeit beim Heben eines Körpers (Hubarbeit),
 
  • die Arbeit beim Beschleunigen eines Körpers (Beschleunigungsarbeit),
 
  • die Arbeit beim Wirken von Reibungskräften (Reibungsarbeit),
 
  • die Arbeit beim Dehnen einer Feder (Federspannarbeit) und
 
  • die Arbeit beim Komprimieren eines Gases (Volumenarbeit).

Häufig wirken bei einem Vorgang auch mehrere Arten von Arbeit.

Artikel lesen

Bahnformen und Energie von Satelliten

Künstliche Satelliten können sich auf sehr unterschiedlichen Bahnen um die Erde oder zu anderen Himmelskörpern hin bewegen. Dabei handelt es sich um kreisförmige, elliptische oder parabelförmige Bahnen, die aber durch Triebwerke oder durch den Einfluss von Himmelskörpern verändert werden können.
Bei interplanetaren Flugbahnen sind die HOHMANN-Bahnen von besonderem Interesse.
Bei Swing-by-Manövern nutzt man das Gravitationsfeld und die Eigenbewegung von Himmelskörpern dazu, die Bahn und die Bewegung von Satelliten zu beeinflussen.

Artikel lesen

Energieformen und Energieträger

Energie kann in unterschiedlichen Formen existieren. Wichtige Energieformen sind die chemische Energie, die innere Energie, die Kernenergie, die potenzielle und die kinetische Energie sowie die Energie, die in elektrischen und magnetischen Feldern gespeichert ist (Lichtenergie, elektrische Energie, magnetische Energie), und diejenige, die in Gravitationsfeldern gespeichert ist (Feldenergie).
Objekte, die Energie besitzen, nennt man Energieträger oder Energiequellen. Zu solchen Energieträgern oder Energiequellen gehören Kraftstoffe und Heizstoffe ebenso wie die Nahrung, fließendes und angestautes Wasser, Batterien oder aufgeladene Kondensatoren. Als Energiequellen betrachtet man auch Solarzellen und Sonnenkollektoren, die Sonne und andere Sterne oder spaltbare Stoffe wie Uran oder Plutonium.

Artikel lesen

Mechanische Energie und ihre Erhaltung

Mechanische Energie ist die Fähigkeit eines Körpers, aufgrund seiner Lage oder seiner Bewegung mechanische Arbeit zu verrichten, Wärme abzugeben oder Strahlung auszusenden.

Formelzeichen: E mech
Einheiten:ein Joule (1 J)
ein Newtonmeter (1 Nm)


Spezielle Formen mechanischer Energie sind die potenzielle Energie und die kinetische Energie.
Für ein abgeschlossenes mechanisches System gilt der Energieerhaltungssatz der Mechanik.

Artikel lesen

Energie und Arbeit im Gravitationsfeld

Um eine Weltraumstation oder einen Satelliten in den Orbit zu bringen, ist eine bestimmte Arbeit im Gravitationsfeld der Erde erforderlich. Darüber hinaus muss der Station oder dem Satelliten eine bestimmte Geschwindigkeit verliehen werden, damit sie sich auf einer stabilen Bahn bewegen. Die Körper besitzen damit potenzielle und kinetische Energie. Arbeit und potenzielle Energie im Gravitationsfeld können mithilfe des Gravitationsgesetzes berechnet werden, die kinetische Energie ergibt sich aus der Masse und der Geschwindigkeit des Körpers.

Artikel lesen

Gleichgewicht von Körpern

Jeder Körper befindet sich zu einem gegebenen Zeitpunkt in einer bestimmte Lage. Er kann, wenn er sich selbst überlassen bleibt, diese Lage ändern oder beibehalten. In der Physik spricht man in diesem Zusammenhang vom Gleichgewicht und unterscheidet zwischen dem stabilen, dem labilen und dem indifferenten Gleichgewicht. In welchem Gleichgewicht sich ein Körper befindet, hängt von der Lage des Schwerpunktes bez. der Drehachse ab. Die Gleichgewichtslage lässt sich auch energetisch charakterisieren.

Artikel lesen

Gravitationsfelder

Unter einem Gravitationsfeld versteht man den besonderen Zustand des Raumes um einen massebehafteten Körper. In einem Gravitationsfeld werden auf andere Körper Gravitationskräfte ausgeübt.
Veranschaulichen kann man sich ein Gravitationsfeld ähnlich wie ein elektrisches oder ein magnetisches Feld durch Feldlinien oder Äquipotenziallinien. Die quantitative Beschreibung eines Gravitationsfeldes kann mithilfe von Feldgrößen (Gravitationsfeldstärke, Potenzial) erfolgen.

Artikel lesen

Arbeit und Energie im elektrischen Feld

Befinden sich elektrisch geladene Körper oder Teilchen im elektrischen Feld und sind sie frei beweglich, so wirkt auf sie eine Feldkraft, die Arbeit an diesen Körpern bzw. Teilchen verrichtet. Will man umgekehrt geladene Körper oder Teilchen im Feld bewegen, so muss Arbeit verrichtet werden, wenn die Bewegung entgegen der Feldkraft erfolgen soll. Die erforderliche Feldkraft kann bei einfachen Feldformen berechnet werden.
Wird an geladenen Körpern oder Teilchen mechanische Arbeit verrichtet, so ändert sich ihre Energie. Dabei gilt für den Zusammenhang zwischen Arbeit und Energie der allgemeine Zusammenhang W = Δ E .

Artikel lesen

Energieformen

Energie kann in unterschiedlichen Formen existieren. Wichtige Energieformen sind die chemische Energie, die thermische Energie, die Kernenergie, die potenzielle und die kinetische Energie sowie die Energie, die in elektrischen und magnetischen Feldern gespeichert ist.

Artikel lesen

Potenzielle Energie und Potenzial

Potenzielle Energie und Potenzial sind wichtige Größen zur Charakterisierung eines Gravitationsfeldes.
Die potenzielle Energie eines Körpers ist von der Stärke des Gravitationsfeldes, von seiner Masse und davon abhängig, auf welches Bezugsniveau man die potenzieller Energie bezieht. In der Physik ist es üblich, die potenzielle Energie im Unendlichen null zu setzen.
Das Potenzial charakterisiert das Feld und ist damit eine Feldgröße. Unter dem Potenzial eines Punktes im Gravitationsfeld versteht man einen Zustand des Feldes, der ein Maß für die potenzielle Energie eines Körpers im betreffenden Punkt ist, wobei als Bezugspunkt (Nullniveau) ein Punkt im Unendlichen gewählt wird.

Artikel lesen

Innere Energie

Die innere Energie gibt an, wie groß die in einem abgeschlossenen System (Körper) gespeicherte Energie ist.
Formelzeichen: U
Einheit: ein Joule (1 J)
Sie ist die Gesamtenergie aller Teilchen (Atome, Moleküle) eines Körpers und setzt sich damit aus der Summe der Bewegungsenergien bei Translation, Rotation und Schwingungen, der potenziellen Energien und der Bindungsenergien zusammen.
Bei Gasen wird die innere Energie im Wesentlichen von den Bewegungsenergien der Teilchen bestimmt.

Artikel lesen

Wissenstest, Gravitation

Die Gravitation oder Massenanziehung wirkt überall. So wird unser Körper ständig von der Erde angezogen und umgekehrt. Isaac Newton fand das Gravitationsgesetz, das nicht nur auf der Erde gilt, sondern auch die Bewegung der Himmelskörper bestimmt. Die Gesetze der Planetenbewegung wurden von Johannes Kepler formuliert, bevor das Gravitationsgesetz und damit die Ursache der Bewegung bekannt war. Im Test wird geprüft, ob die grundlegenden Größen und Zusammenhänge verstanden sind und angewendet werden können.

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Physik - Gravitation".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Artikel lesen

Wissenstest, Mechanische Arbeit, Energie und Leistung

Zentrale Größen der Physik sind die Größen Energie, Arbeit und Leistung. Sie spielen auch weit über die Physik hinaus eine Rolle, insbesondere der Begriff Energie und solche damit zusammenhängenden Begriff wie Energieversorgung, Energieerhaltung, Energietransport oder Energieentwertung. Der Test dient der Prüfung grundlegender Kenntnisse über Energie, Arbeit und Leistung.

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Physik - Energie, mechanische Arbeit und Leistung".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

20 Suchergebnisse

Fächer
  • Physik (20)
Klassen
  • 5. Klasse (7)
  • 6. Klasse (7)
  • 7. Klasse (7)
  • 8. Klasse (7)
  • 9. Klasse (7)
  • 10. Klasse (7)
  • Oberstufe/Abitur (13)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025