Direkt zum Inhalt

10 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Folgen, Partialsummen

Unter der n-ten Partialsumme s n einer Zahlenfolge ( a n ) versteht man die Summe der Folgenglieder von a 1       b i s       a n .
Die immer weiter fortgesetzte Partialsumme einer (unendlichen) Zahlenfolge nennt man eine (unendliche) Reihe.

Artikel lesen

Potenzfunktionen, allgemein

Funktionen mit Gleichungen
der Form y = x n     ( x   ∈ ℝ ,     n ∈   ℤ )
heißen Potenzfunktionen.
Es ist zweckmäßig, eine Einteilung der Potenzfunktionen in Abhängigkeit vom Exponenten n vorzunehmen.

Artikel lesen

Lineare Gleichungssysteme

Gleichungssysteme mit mehr als zwei Unbekannten können z. B. mithilfe des gaußschen Algorithmus oder der cramerschen Regel gelöst werden. Die cramersche Regel basiert auf der Berechnung von Determinanten und dem Verfahren von SARRUS.

Artikel lesen

Lineare Gleichungssysteme, Grafisches Lösen

Ein lineares Gleichungssystem mit den beiden Variablen x und y besteht aus zwei linearen Gleichungen (I und II) mit jeweils den Variablen x und y.
I     a 1 x + b 1 y = c 1     a 1 ,b 1 ,c 1 ∈ ℚ II       a 2 x + b 2 y = c 2       a 2 ,b 2 ,c 2 ∈ ℚ
Zur Lösungsmenge eines linearen Gleichungssystems gehören die Zahlenpaare, die sowohl zur Lösungsmenge der Gleichung I als auch zur Lösungsmenge der Gleichung II gehören.

Artikel lesen

Einsetzungsverfahren

Wenn eine der beiden linearen Gleichungen in die andere Gleichung des linearen Gleichungssystems „eingesetzt“ wird, um die Lösung des Gleichungssystems zu bestimmen, so nennt man dieses Verfahren Einsetzungsverfahren.

Ein lineares Gleichungssystem mit zwei Variablen wird mit dem Einsetzungsverfahren in folgenden Schritten gelöst:

  1. Es wird – falls nötig – eine der beiden linearen Gleichungen nach einer der beiden Variablen umgeformt.
  2. Die umgeformte Gleichung wird für die Variable in die andere Gleichung eingesetzt.
  3. Die so entstandene lineare Gleichung mit nur einer Variablen wird gelöst.
  4. Die erhaltene Lösung wird in eine der beiden Ausgangsgleichungen eingesetzt und die Gleichung gelöst.
Artikel lesen

Periodizität von Funktionen

Eine Funktion f heißt periodische Funktion, wenn es eine Zahl b (mit b > 0) gibt, sodass mit x auch x + b zum Definitionsbereich D gehört und für jedes x ∈ D gilt:
  f   ( x ) = f   ( x + b )
Die kleinste derartige Zahl b wird Periode von f genannt.

Artikel lesen

Additionsverfahren

Werden die beiden linearen Gleichungen eines Gleichungssystems addiert, um die Lösung des Gleichungssystems zu erhalten, so wird dieses Verfahren Additionsverfahren genannt.

Ein lineares Gleichungssystem mit zwei Variablen wird mit dem Additionsverfahren in folgenden Schritten gelöst:

  1. Falls nötig wird eine Gleichung oder werden beide lineare Gleichungen so umgeformt, dass bei Addition der Gleichungen eine der beiden Variablen wegfällt.
  2. Beide Gleichungen werden addiert.
  3. Die entstandene lineare Gleichung mit nur einer Variablen wird gelöst.
  4. Die so erhaltene Lösung wird in eine der beiden Ausgangsgleichungen eingesetzt und diese Gleichung gelöst.
Artikel lesen

Gleichsetzungsverfahren

Werden die beiden linearen Gleichungen des linearen Gleichungssystems nach derselben Variablen aufgelöst und die entsprechenden Terme gleichgesetzt, um die Lösung des Gleichungssystems zu bestimmen, so nennt man dieses Verfahren Gleichsetzungsverfahren.

Ein lineares Gleichungssystem mit zwei Variablen wird mit dem Gleichsetzungsverfahren in folgenden Schritten gelöst:

  1. Es werden – falls nötig – beide lineare Gleichungen nach derselben Variablen aufgelöst.
  2. Die erhaltenen Terme werden gleichgesetzt.
  3. Die so entstandene lineare Gleichung mit nur einer Variablen wird gelöst.
  4. Die erhaltene Lösung wird in eine der beiden Ausgangsgleichungen eingesetzt und die Gleichung gelöst.
Artikel lesen

Gleichungen, Lösen

Treten Variablen in einer Gleichung auf, so werden diese erst dann zu einer wahren oder falschen Aussage, wenn die Variablen mit Zahlen oder Größen aus einer Grundmenge belegt werden.
Das Bestimmen aller Zahlen, die die Gleichung zu einer wahren Aussage machen, heißt Lösen der Gleichung. Jede solche Zahl heißt Lösung und alle diese Zahlen zusammen bilden die Lösungsmenge der Gleichung. Die Lösungsmenge wird mit L bezeichnet.

Artikel lesen

Winkelfunktionen, y = a sin (bx + c)

Besonders bei der mathematischen Beschreibung von Schwingungsvorgängen wird häufig von Winkelfunktionen, speziell der Sinusfunktion mit Gleichungen der Form y = f ( x ) = a ⋅ sin   ( b x + c ) Gebrauch gemacht.
Bezogen auf den Graphen von f nennt man deshalb a auch die Amplitude der Sinuskurve, b deren Frequenz und c ihre Phasenverschiebung.

10 Suchergebnisse

Fächer
  • Mathematik (10)
Klassen
  • 5. Klasse (10)
  • 6. Klasse (10)
  • 7. Klasse (10)
  • 8. Klasse (10)
  • 9. Klasse (10)
  • 10. Klasse (10)
  • Oberstufe/Abitur (95)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025