Direkt zum Inhalt

11 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Sieden und Kondensieren

Als Sieden bezeichnet man den Übergang vom flüssigen in den gasförmigen Aggregatzustand, als Kondensieren den umgekehrten Übergang vom gasförmigen in den flüssigen Aggregatzustand.

Dabei gilt:

  • Siedetemperatur und Kondensationstemperatur sind gleich groß. Sie hängen vom jeweiligen Stoff und vom Druck ab.
  • Verdampfungswärme und Kondensationswärme sind für einen bestimmten Stoff ebenfalls gleich groß.
Artikel lesen

Temperatur und Temperaturmessung

Die Temperatur kennzeichnet den thermischen Zustand von Körpern oder Systemen. Sie gibt an, wie heiß oder wie kalt ein Körper bzw. ein System ist. Die Temperatur wird bei uns meist in Grad Celsius oder in Kelvin angegeben. Daneben gibt es mit der FAHRENHEIT-Skala und der REAUMUR-Skala weitere Temperaturskalen.
Die Temperatur kann in vielfältiger Weise gemessen werden. Am meisten verbreitet sind verschiedene Arten von Thermometern.
Für unsere Temperaturwahrnehmung spielt nicht nur die Temperatur im physikalischen Sinne eine Rolle, sie wird auch von anderen Faktoren beeinflusst. In der Meteorologie spricht man von der gefühlten Temperatur.

Artikel lesen

Verdunsten und Verdampfen

Als Verdunsten bezeichnet man den Übergang vom flüssigen in den gasförmigen Aggregatzustand unterhalb der Siedetemperatur, als Verdampfen
den Übergang vom flüssigen in den gasförmigen Aggregatzustand bei Siedetemperatur. Das Verdampfen erfolgt also stets in Verbindung mit dem Sieden. Nähere Hinweise dazu sind unter diesem Stichwort zu finden. Insbesondere bei Wasser wird häufig vom Verdampfen gesprochen.
Wie schnell Wasser oder andere Flüssigkeiten verdunsten, hängt von verschiedenen Faktoren ab.

Artikel lesen

Wissenstest, Kinetische Theorie der Wärme

In der kinetischen Theorie der Wärme erfolgt die Beschreibung des Verhaltens von Gasen mit solchen Größen wie Teilchenzahl, mittlere Geschwindigkeit und mittlere kinetische Energie. Diese Teilchengrößen sind unmittelbar mit makroskopisch messbaren Größen wie dem Druck und der Temperatur verbunden. Der Test zeigt Ihnen, ob sie Grundaussagen und Zusammenhänge dieses Gegenstandsbereichs der Physik verstanden haben.

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Physik - Kinetische Theorie der Wärmer".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Artikel lesen

Wissenstest, Thermisches Verhalten von Körpern und Stoffen


Zum thermischen Verhalten von Körpern und Stoffen gehören die Längen- und Volumenänderung bei Temperaturänderung, die verschiedenen Aggregatzustandsänderungen sowie das Verhalten von Gasen, das unter Nutzung des Modells ideales Gas beschrieben wird. Im Test wird geprüft, inwieweit Grundkenntnisse über die genannten Inhalte vorhanden sind.

 

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Physik - Thermisches Verhalten von Körpern und Stoffen".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Artikel lesen

Grundgleichung der kinetischen Gastheorie

Teilchengrößen wie die Teilchenanzahl, die Geschwindigkeit der Teilchen oder ihre kinetische Energie sind eng mit solchen Größen wie Volumen, Druck und Temperatur verbunden. Die Zusammenhänge lassen sich aus kinetisch-statistischer Sicht herleiten und führen zur sogenannten Grundgleichung der kinetischen Gastheorie, die man in unterschiedlicher Form angeben kann, beispielsweise folgendermaßen:

p ⋅ V = 2 3 ⋅ N ⋅ E ¯ kin p ⋅ V = N ⋅ k ⋅ T p ⋅ V = 1 3 ⋅ N ⋅ m ⋅ v 2 ¯

Die Interpretation dieser Grundgleichung in ihren verschiedenen Formulierungen führt zu wichtigen Zusammenhängen zwischen Zustandsgrößen eines thermodynamischen Systems und Teilchengrößen.

Artikel lesen

Isobare Zustandsänderungen

Bei einer isobaren Zustandsänderung eines Gases bleibt der Druck konstant. Die Zustandskurve im p-V-Diagramm ist eine Parallele zur V-Achse. Ein solcher Prozess kann realisiert werden, wenn dem Gas eine Wärme Q zugeführt wird. Damit dabei der Druck konstant bleibt, muss von dem Gas gleichzeitig Volumenarbeit verrichtet werden. Die zugeführte Wärme Q erzeugt bei einer isobaren Zustandsänderung eine Änderung der inneren Energie und des Volumens. Nach dem 1. Hauptsatz der Thermodynamik ergibt sich die Bilanz:

Q = Δ U − W

Bei Verwendung des Modells des idealen Gases erhöht die zugeführte Wärme Q die innere Energie U des Gases und verrichtet Volumenarbeit.

Artikel lesen

Isochore Zustandsänderungen

Bei einer isochoren Zustandsänderung eines Gases bleibt das Volumen konstant. Die Zustandskurve im p-V-Diagramm verläuft vertikal, parallel zur p-Achse. Ein solcher Prozess wird realisiert, wenn Gas in einem geschlossenen Behälter erwärmt wird. Die zugeführte Wärme führt zu einer Erhöhung der Temperatur und damit zu einer Änderung der inneren Energie U. Da das Volumen konstant bleibt, wird von dem Gas keine Arbeit verrichtet. Nach dem 1. Hauptsatz der Thermodynamik ist damit die zugeführte Wärme gleich der Änderung der inneren Energie des Gases:

Q = Δ U

Bei Verwendung des Modells ideales Gas erhöht die zugeführte Wärme die inneren Energie des Gases bei einem isochoren Prozess um:

Δ U = 3 2 N ⋅ k ⋅ Δ T N Anzahl der Teilchen k BOLTZMANN-Konstante Δ T Temperaturdifferenz

Daraus lässt sich die molare Wärmekapazität eines idealen Gases bei konstantem Volumen berechnen.

Artikel lesen

Nullter Hauptsatz der Thermodynamik

Das Streben nach thermischem Gleichgewicht durch Temperaturausgleich ist charakteristisch für thermodynamische Systeme. Es wird heute oft als nullter Hauptsatz der Thermodynamik bezeichnet, da diese Eigenschaft thermodynamischer Systeme Grundlage für viele Temperaturmessungen ist. Dieser Hauptsatz lautet:

Werden zwei thermodynamische Systeme (Körper) miteinander in Kontakt gebracht, so gleichen sich ihre Temperaturen in endlicher Zeit aus.

Die gleiche Temperatur bleibt auch nach der Trennung der Systeme erhalten, wenn keine Wärmeübertragung zwischen Systemen und Umgebung erfolgt.

Artikel lesen

Schmelzen und Erstarren

Als Schmelzen bezeichnet man den Übergang vom festen in den flüssigen Aggregatzustand, als Erstarren den umgekehrten Übergang vom flüssigen in den festen Aggregatzustand. Dabei gilt:

  • Schmelztemperatur und Erstarrungstemperatur sind gleich groß. Sie hängen vom jeweiligen Stoff und vom Druck ab.
  • Schmelzwärme und Erstarrungswärme sind für einen bestimmten Stoff ebenfalls gleich groß.
Artikel lesen

Adiabatische Zustandsänderungen

Eine adiabatische Zustandsänderung ist dadurch gekennzeichnet, das bei dem Prozess keine Wärme mit der Umgebung (Q = 0) ausgetauscht wird. Dies kann bei allen schnell ablaufenden thermodynamischen Vorgängen angenommen werden. Charakteristisch für adiabatische Vorgänge ist, dass sich alle drei Zustandsgrößen Temperatur, Druck und Volumen gleichzeitig ändern. Die Adiabate im p-V-Diagramm verläuft daher steiler als Isothermen und schneidet diese.
Zu unterscheiden ist zwischen einer adiabatischen Expansion und einer adiabatischen Kompression. Die Energiebilanzen ergeben sich aus dem 1. Hauptsatz der Thermodynamik. Für das Modell ideales Gas kann die Adiabate p = p(V) berechnet werden. Es ergeben sich die poissonschen Gesetze.

11 Suchergebnisse

Fächer
  • Physik (11)
Klassen
  • 5. Klasse (13)
  • 6. Klasse (13)
  • 7. Klasse (13)
  • 8. Klasse (13)
  • 9. Klasse (13)
  • 10. Klasse (13)
  • Oberstufe/Abitur (11)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025