Direkt zum Inhalt

9 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Mengen, Mächtigkeit

Zwei Mengen A und B sind zueinander gleichmächtig (A ~ B), wenn es eine eineindeutige Abbildung von A auf B gibt.
Jedem Element von A kann also genau ein Element von B und zugleich jedem Element von B genau ein Element von A zugeordnet werden.

Artikel lesen

Georg Ferdinand Ludwig Philipp Cantor

* 3. März 1845 St. Petersburg
† 6. Januar 1918 Halle (Saale)

GEORG CANTOR, der über 30 Jahre Professor an der Hallenser Universität war, gilt als Begründer der (axiomatischen) Mengenlehre. Er formulierte die Begriffe Äquivalenz und Mächtigkeit von Mengen, auf die sich die von ihm geschaffene Theorie der Kardinalzahlen stützt.
Mithilfe des sogenannten Diagonalverfahrens zeigte CANTOR, dass es zwar unendlich viele rationale Zahlen gibt, man diese jedoch abzählen kann.

Artikel lesen

Differenzmenge

Die Differenzmenge A \ B (gesprochen „A ohne B“) ist die Menge aller Elemente, die in A und nicht in B enthalten sind:

   A \ B = { x :       x ∈ A ∧ x ∉ B }

Artikel lesen

Durchschnittsmenge (Durchschnitt)

Die Durchschnittsmenge (Schnittmenge) von A und B ( A ∩ B ) ist die Menge aller Elemente, die in A und zugleich in B enthalten sind.
Man liest: „A geschnitten B“.
A ∩ B = { x :       x ∈ A ∧ x ∈ B }
Das Zeichen „ ∧ “ steht für das Bindewort „und“.

Artikel lesen

Gruppen

Eine nichtleere Menge G von Elementen a, b, c, ... heißt Gruppe, wenn in ihr eine Operation ∘ erklärt ist, die folgenden Axiomen genügt:

  1. Die Operation ∘ ist assoziativ,
    d.h. für alle Elemente a ,     b ,     c ∈ G gilt a ∘ ( b ∘ c ) = ( a ∘ b ) ∘ c .
  2. Die Operation ∘ ist umkehrbar, d.h. zu beliebigen Elementen a ,     b ∈ G sind die Gleichungen a ∘ x = b und y ∘ a = b       ( mit x ∈ G und y ∈ G )   lösbar.

Man nennt G eine abelsche Gruppe, wenn zusätzlich noch gilt:

  1. Die Operation ∘ ist kommutativ, d.h. für alle a ,     b ∈ G gilt a ∘ b = b ∘ a .
Artikel lesen

Produktmenge

Die Produktmenge A x B (gesprochen „A kreuz B“) ist die Menge aller geordneten Paare, deren erstes Element aus A und deren zweites Element aus B ist.
A × B = { ( x ;   y ) :       x ∈ A ∧ y ∈ B }
Die Produktmenge ist nicht kommutativ.

Artikel lesen

Vereinigungsmenge

Die Vereinigungsmenge von A und B ( A ∪ B ) ist die Menge aller Elemente, die in A oder in B oder in beiden Mengen enthalten sind.
Man liest: „A vereinigt B“.
A ∪ B = { x :       x ∈ A ∨ x ∈ B }
Das Zeichen „ ∨ “ steht für das „oder“ mit den drei angegebenen Bedeutungen.

Artikel lesen

Mengen, Darstellung

Mengen lassen sich in beschreibender oder in aufzählender Form angeben.
Ist x ein Element der Menge M, so schreibt man x ∈ M .
Ist x kein Element der Menge M, so schreibt man x ∉ M .

Artikel lesen

Zählprinzipien

Bei der Lösung kombinatorischer Probleme sind zwei Zählprinzipien hilfreich – das für k-Tupel und das für Mengen.

9 Suchergebnisse

Fächer
  • Mathematik (9)
Klassen
  • 5. Klasse (2)
  • 6. Klasse (2)
  • 7. Klasse (2)
  • 8. Klasse (2)
  • 9. Klasse (2)
  • 10. Klasse (2)
  • Oberstufe/Abitur (7)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025