Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Biologie Abitur
  3. 4 Steuerung, Regelung, Informationsverarbeitung
  4. 4.1 Erregung und Erregungsleitung
  5. 4.1.4 Der Bau der Nervenzelle bestimmt ihre Leitungsgeschwindigkeit
  6. Erregungsleitung

Erregungsleitung

Um die Information zwischen den erregbaren Strukturen zu sichern, müssen die Aktionspotenziale (AP) fortgeleitet werden. Voraussetzung dafür ist die Eigenschaft der Axonmembran, Spannungsänderungen an einer Stelle der Membran als Auslöser für die Spannungsänderung an der benachbarten Stelle der Membran zu nutzen. Diese Art der Erregungsleitung ist für marklose Neuriten (Axone) typisch. Sie wird als kontinuierliche Erregungsleitung bezeichnet.

Bei Isolierung des Neuriten durch die Markscheide (markhaltige Neurite) können die AP nur an den ranvierschen Schnürringen entstehen, da sich nur dort die spannungsabhängigen Ionenkanäle befinden und Kontakt zwischen Außenmedium und Zellinnerem besteht. Das AP „springt“ also von Schnürring zu Schnürring. Diese Art der Erregungsleitung wird deshalb auch als saltatorischen Erregungsleitung bezeichnet.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Die saltatorische Erregungsleitung ist schneller und sicherer, sie verbraucht auch weniger Energie, da Ionenpumpen nur an ranvierschen Schnürringen arbeiten.

Die Erregungsleitungsgeschwindigkeit ist außerdem vom Faserdurchmesser, von der Temperatur und vom Stoffwechsel abhängig.
Je größer der Faserdurchmesser, umso größer die Leitungsgeschwindigkeit.

Marklose Neurite haben eine Leitungsgeschwindigkeit von ca. 1 m   ⋅   s -1 . Maximale Geschwindigkeit von 25 m   ⋅   s -1 erreichen die 0,7 mm dicken marklosen Neurite des Tintenfisches. Markhaltige Neurite leiten mit Geschwindigkeiten bis 120 m   ⋅   s -1 bei einem Durchmesser von 15 mm.

Lernhelfer (Duden Learnattack GmbH): "Erregungsleitung." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/schuelerlexikon/biologie-abitur/artikel/erregungsleitung (Abgerufen: 10. July 2025, 05:11 UTC)

Suche nach passenden Schlagwörtern

  • Video
  • Reize
  • Neurite
  • Nervenzellen
  • Erregbarkeit
  • Sinneszellen
  • Erregungsleitung
  • Erregung
  • kontinuierliche Erregungsleitung
  • saltatorische Erregungsleitung
  • Neuronen
  • ranviersche Schnürringe
  • Sinnesorgane
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Iwan Petrowitsch Pawlow

* 14.09.1849 in Rjasan/Russland
† 27.02.1936 in Leningrad/Sowjetunion

Der russische Physiologe IWAN PETROWITSCH PAWLOW wurde am 14. September 1849 in Rjasan als Pfarrerssohn geboren. Nach dem Studium der Theologie, Chemie und Physiologie sowie einem zweijährigen Deutschlandaufenthalt wurde er 1890 Professor für Physiologie an der Kaiserlichen Medizinischen Akademie in St. Petersburg.

Berühmt wurde PAWLOW durch seine Untersuchungen zum Verdauungsverhalten von Hunden. PAWLOW beobachtete, dass nach mehrmaliger Kombination von akustischen Reizen (Glockenläuten) mit einer folgenden Fütterung bereits die Tonwahrnehmung ausreichte, um bei dem Hund Speichelfluss auszulösen.

Genetisch bedingte Alkoholempfindlichkeit

Menschen nehmen sehr häufig Alkohol mit der Nahrung zu sich. Er ist natürlicherweise u.a. in vergorenen Früchten und Getreide (Brot) enthalten, heutzutage enthalten viele Süßspeisen, Getränke oder Fertiggerichte Alkohol. Alkohol (Ethanol) stellt für den Körper ein Gift dar (es zerstört u.a. Nervenzellen irreparabel), das mit Priorität aus dem Körper entfernt wird. Sehr geringe Mengen werden mit der Atemluft abgegeben, über die Haut ausgeschwitzt oder mit dem Urin ausgeschieden. Die restlichen über 90 % des vom Körper aufgenommenen Alkohols werden in der Leber durch Oxidation abgebaut und dann ebenfalls über Lunge bzw. Niere ausgeschieden.
Der Alkoholabbau in der Leber erfolgt in drei Schritten:
Zunächst wird mihilfe des Enzyms Alkoholdehydrogenase (ADH) Ethanol zu Ethanal (Acetaldehyd) abgebaut. Dieses noch stärkere Zellgift, das beim Abbau von Alkohol im Alkoholstoffwechsel als erstes Zwischenprodukt entsteht, wird durch das Enzym Aldehyddehydrogenase weiter zu Acetat (Essigsäure) und dieses anschließend im Citratzyklus in Kohlenstoffdioxid und Wasser umgewandelt.
Manche Menschen haben genetisch bedingt eine hohe Aktivität des Enzyms Alkoholdehydrogenase (ADH), wodurch aus Ethanol sehr schnell eine hohe Menge des giftigen Ethanals entsteht. Andere haben ein genetisch bedingtes Defizit des Enzyms Aldehyddehydrogenase (ALDH), wodurch Ethanal nicht genügend entgiftet werden kann. In beiden Fällen des genetisch veränderten Alkoholstoffwechsels steigt die Alkoholempfindlichkeit, d.h. die Menschen sind bei Alkoholaufnahme stärker gefährdet.
80% der asiatischen Einwohner haben genetisch bedingt die zweitgenannte Form der Alkoholempfindlichkeit. Die Folgen für den Organismus bei Alkoholaufnahme dieser Menschen sind oft gravierend.

Muskeln

Die Muskulatur des Menschen nimmt einen Anteil von ca. 50 % an der Gesamtkörpermasse ein. Die Muskeln kontrahieren aktiv, können aber nur passiv gedehnt werden. Die Dehnung erfolgt oft durch einen Gegenspieler (Antagonisten). Muskelpaare, die gleichförmig arbeiten, bezeichnet man als Synergisten.

Je nach der Belastungsart unterscheidet man zwischen:
 
  • isotonischer und
  • isometrischer Kontraktion.
  

Das Verrichten von Muskelarbeit erfordert den Einsatz von Energie in Form von ATP (Adenosintriphosphat) bzw. KTP (Kreatintriphosphat). Die Muskelarbeit wird von mehreren Faktoren beeinflusst. Um eine dauerhafte Steigerung der Leistungsfähigkeit zu erreichen, müssen diese Faktoren durch ein gezieltes, regelmäßiges Training gefördert werden. Es wird zwischen Ausdauer- und Krafttraining unterschieden.
Eine Überforderung des Bewegungssystems kann zu Muskelverletzungen (Muskelverhärtung, Muskelkater u. a.) führen. Ein Abbruch des Trainings führt zum Verlust der erzielten Wirkungen auf die verschiedenen Organsysteme (Herz-Kreislauf-System u. a.).

Erregbarkeit und Reaktion bei Algen und Pflanzen

Bei Algen- und Pflanzenzellen sind Membranpotenziale an Zell- und Organellengrenzen zu messen.
Riesenzellen, wie sie bei Algen (z. B. Nitella, Chara, Acetabularia) vorkommen und auffällig reagierende Pflanzen (Mimose) werden bevorzugt für elektrophysiologische Untersuchungen verwendet.

Phytohormome (Pflanzenhormone)

Phytohormone sind von Pflanzen synthetisierte Stoffe, die schon in kleinen Mengen steuernd auf pflanzliche Entwicklungs- und Differenzierungsvorgänge einwirken, z. B. auf Keimung, Wachstum, Samenreife, Blattabwurf, Blütenbildung, Differenzierung und Verzweigung. Es gibt viele Parallelen zur Wirkung von Hormonen bei den Tieren aber auch Unterschiede. So lässt sich bei Pflanzen im Gegensatz zu Tieren häufig keine Trennung von Bildungs- und Wirkungsort beobachten. Auch gibt es bei Pflanzen keine fest umrissenen Hormondrüsen. In unterschiedlichen Geweben und Organen können Phytohormone gegensätzliche Reaktionen hervorrufen. Indolessigsäure fördert z. B. das Streckungswachstum in Sprossen, hemmt aber in gleicher Konzentration das Wachstum der Wurzeln.
Bei der Phytohormonforschung spielen Mutanten, die für bestimmte Hormone nicht sensibel sind, eine große Rolle. Auf diese Art und Weise konnten Phytohormonrezeptoren festgestellt werden.
Die Hormonwirkung beruht auf der Aktivierung bestimmter Gene. Die biochemischen Reaktionsketten, die dieser Aktivierung zugrunde liegen, sind in vielen Fällen noch nicht vollständig aufgeklärt.
Man unterscheidet Auxine, Cytokinine, Gibberelline, Ethylen, Brassinosteroide, Oxylipine (Fettsäurederivate) und Peptide (Systemin, Phytosulfokine).

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025