Kenngrößen der Binomialverteilung

  • Eine binomialverteilte Zufallsgröße X B n ; p besitzt den folgenden Erwartungswert :
    E X = n p

Diese Aussage kann streng mathematisch bewiesen werden, indem man z.B. die Eigenschaft E ( X + Y ) = E X + E Y oder die Rekursionseigenschaft
( n + 1 k + 1 ) = n + 1 k + 1 ( n k )
der Binomialkoeffizienten nutzt.

Grafikfähige Taschenrechner oder auch der Computer bieten überdies die Möglichkeit einer stichprobenartigen Bestätigung der obigen Formel (was nachstehend angedeutet werden soll).

Für X B n ; p berechnet sich der Erwartungswert nach folgender Formel:
E X = k = 0 n k P ( X = k ) = k = 0 n k ( n k ) p k ( 1 p ) n k = : e x ( n , p )

Es ist demzufolge nachzuweisen, dass gilt:
1 n E X = 1 n e x ( n , p ) = 1 n n p = p

Dies kann stichenprobenartig für beliebige n ( m i t n \ { 0 } ) und p ( m i t 0 < p < 1 ) kontrolliert werden. Die folgende Abbildung zeigt z.B. die Berechnung von
1 10 k = 0 10 k ( 10 k ) 0,456 k ( 1 0,456 ) 10 k .
Bestätigt wird der Wert 0,456.

Bild

Auch eine interaktive Kontrolle ist möglich.

Erwartungswert einer binomialverteilten Zufallsgröße

Erwartungswert einer binomialverteilten Zufallsgröße

  • Eine binomialverteilte Zufallsgröße X B n ; p besitzt die folgende Streuung :
    D 2 X = V A R X = n p ( 1 p )

Auch hier soll die Richtigkeit dieser Formel durch eine stichprobenartige Kontrolle belegt werden.

Für X B n ; p berechnet sich die Streuung nach folgender Formel:
D 2 X = E X 2 ( E X ) 2 = k = 0 n k 2 ( n k ) p k ( 1 p ) n k ( n p ) 2

Demzufolge ist nachzuweisen, dass für beliebige n ( m i t n \ { 0 } ) und p ( m i t 0 < p < 1 ) gilt:
d ( n , p ) : = D 2 X n p ( 1 p ) = 0

Die folgende Abbildung bestätigt diese Aussage z.B. für n = 35 und p = 0,17 .

Bild

Auch eine interaktive Kontrolle ist möglich.

Streuung einer binomialverteilten Zufallsgröße

Streuung einer binomialverteilten Zufallsgröße

Ein Beispiel und drei Lösungsideen

Beispiel: Wie viele nicht geworfene Augenzahlen sind in einer Serie von sechs Würfen mit einem idealen Würfel zu erwarten, dessen Seitenflächen mit den Augenzahlen 1 bis 6 durchnummeriert sind?

Definiert man als Zufallsgröße X die zufällige Anzahl der nicht geworfenen Augenzahlen bei sechs Würfen, so ist der Erwartungswert EX gesucht.

  • Lösungsidee 1 (Reales Experiment)

Führt man hinreichend viele derartige Sechs-Wurf-Serien mit einem entsprechenden nicht gezinkten Würfel durch und ermittelt bei jeder Serie die Anzahl der nicht geworfenen Augenzahlen, so ergibt deren arithmetisches Mittel einen Näherungswert für den gesuchten Erwartungswert EX.

  • Lösungsidee 2 (Computersimulation)

Mithilfe der Randomfunktion kann eine solche Sechs-Wurf-Serie simuliert werden.

Programm zum Ermitteln der zu erwartenden Anzahl nicht gefallener Augenzahlen in einer Sechs-Wurf-SAerie mittels Computersimulation

Programm zum Ermitteln der zu erwartenden Anzahl nicht gefallener Augenzahlen in einer Sechs-Wurf-SAerie mittels Computersimulation

Die folgende Abbildung zeigt das Ergebnis bei Simulationen von 5, 10 und 100 Sechs-Wurf-Serien.

Bild

  • Lösungsidee 3 (Theoretischer Ansatz)

Um EX berechnen zu können, muss die Verteilung von X bekannt sein. Da X als „zufällige Anzahl ... bei sechs Würfen“ definiert ist, liegt der Gedanke nahe, X durch eine BERNOULLI-Kette der Länge n = 6 zu modellieren, d.h. X B 6 ; p anzusehen (wobei p die Erfolgswahrscheinlichkeit des dazugehörigen BERNOULLI-Experiments ist.)

Aber welches BERNOULLI-Experiment gehört zur Zufallsgröße „zufällige Anzahl der nicht geworfenen Augenzahlen bei sechs Würfen“?

Auf den ersten Blick scheint es nahe liegend zu sein, das einmalige Würfeln in der Sechs-Wurf-Serie als BERNOULLI-Experiment zu wählen. Bei genauerer Betrachtung stößt man aber auf eine Reihe von Widersprüchen.

Zum Beispiel wäre die Wahrscheinlichkeit, beim ersten Wurf eine noch nicht gewürfelte Augenzahl zu würfeln, p = 1 , beim zweiten Wurf wäre sie aber p = 5 6 . Damit wäre aber eine wesentliche Bedingung einer BERNOULLI-Kette – gleiche Erfolgswahrscheinlichkeit p – nicht erfüllt.

Als BERNOULLI-Experiment betrachten wir daher jetzt eine ganze Sechs-Wurf-Serie. Als „Erfolg“ wird bewertet, wenn eine bestimmte, aber beliebige Augenzahl k nicht geworfen wird. Die Erfolgswahrscheinlichkeit p ist dann unabhängig von der konkreten Augenzahl k und zwar p = ( 5 6 ) 6 .

Realisiert man dieses BERNOULLI-Experiment für jede Augenzahl k genau einmal, so ist die Anzahl aller eingetretenen „Erfolge“ gleich der Anzahl der nicht geworfenen Augenzahlen in einer Wurfserie. Man erhält also ein geeignetes Modell der zu untersuchenden BERNOULLI-Kette, d.h. es ist:
X B 6 ; ( 5 6 ) 6 E X = n p = 6 ( 5 6 ) 6 2,009

Es sind also etwa 2,009 nicht geworfene Augenzahlen in einer Sechs-Wurf-Serie zu erwarten.

Stand: 2010
Dieser Text befindet sich in redaktioneller Bearbeitung.

Lexikon Share
Lernprobleme in Mathe?
 

Mit deinem persönlichen Nachhilfe-Tutor Kim & Duden Learnattack checkst du alles. Jetzt 30 Tage risikofrei testen.

  • KI-Tutor Kim hilft bei allen schulischen Problemen
  • Individuelle, kindgerechte Förderung in Dialogform
  • Lernplattform für 9 Fächer ab der 4. Klasse
  • Über 40.000 Erklärvideos, Übungen & Klassenarbeiten
  • Rund um die Uhr für dich da

Einloggen