Direkt zum Inhalt

9 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Jakob Bernoulli

* 27. Dezember 1654 (6. Januar 1655) Basel
† 16. August 1705 Basel

JAKOB BERNOULLI gilt als einer der Hauptvertreter der Infinitesimalrechnung seiner Zeit. Gemeinsam mit seinem Bruder Johann entwickelte er den „Leibnizschen Calculus“ weiter.
Mit dem aus seinem Nachlass im Jahre 1713 herausgegebenen Buch „Ars conjectandi“ wurde JAKOB BERNOULLI zum Begründer einer Theorie der Wahrscheinlichkeitsrechnung. In diesem Werk wird u.a. die Anwendung der Kombinatorik auf Glücks- und Würfelspiele beschrieben, und das (schwache) Gesetz der großen Zahlen wird formuliert.

Artikel lesen

Kenngrößen der Binomialverteilung

Kenngrößen von Zufallsgrößen dienen deren quantitativer Charakterisierung. Wir betrachten im Folgenden binomialverteilte Zufallsgrößen.

Artikel lesen

Empirisches Gesetz der großen Zahlen

Das empirisches Gesetz der großen Zahlen, welches JAKOB BERNOULLI (1655 bis 1705) als „theorema aureum“ (goldenen Satz) bezeichnet hat, lautet folgendermaßen:

  • Ist A ein Ereignis eines Zufallsexperiments, so stabilisieren sich bei einer hinreichend großen Anzahl n von Durchführungen dieses Experiments die relativen Häufigkeiten h n ( A ) .
Artikel lesen

Bernoulli-Ketten

Wird ein Bernoulli-Versuch insgesamt n-mal unabhängig voneinander (hintereinander) durchgeführt, so spricht man von einer Bernoulli-Kette der Länge n. Mithilfe der bernoullischen Formel kann eine Aussage über die Wahrscheinlichkeit des Auftretens von k Erfolgen gemacht werden. Es ist:
  P ( genau k Erfolge ) = ( n k ) ⋅ p k ⋅ ( 1 − p ) n − k   ( k = 0 ;   1   ...   n )
Hierbei ist p die Erfolgswahrscheinlichkeit des Bernoulli-Versuches.

Artikel lesen

Bernoulli-Versuche

Zufallsversuche mit genau zwei möglichen Ergebnissen, d. h. Vorgänge mit zufälligem Ergebnis, bei denen nur zwischen Erfolg (Treffer) und Misserfolg (Niete) unterschieden wird, heißen Bernoulli-Versuche.

Ist p die Wahrscheinlichkeit für einen Erfolg, so beträgt die Wahrscheinlichkeit für einen Misserfolg 1 – p.

Mehrstufige Bernoulli-Versuche bezeichnet man als Bernoulli-Ketten.

Artikel lesen

Binomialverteilung

Die Verteilung der Anzahl k der Erfolge in einer Bernoulli-Kette der Länge n und der Erfolgswahrscheinlichkeit p wird Binomialverteilung mit den Parametern n und p genannt. Es gilt:

  P ( X = k ) = ( n k ) ⋅ p k ⋅ ( 1 − p ) n − k   ( k = 0 ;     1     ...     n )

Tabellen der Binomialverteilung für bestimmte Parameterwerte von n und p sind in vielen Tafelwerken enthalten.
Binomialverteilungen lassen sich mithilfe des sogenannten Galton-Bretts veranschaulichen.

Artikel lesen

Wahrscheinlichkeiten, Berechnen

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Mathematik - Berechnen von Wahrscheinlichkeiten für k Erfolge bei einer Bernoulli-Kette".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Artikel lesen

Mehrstufige Zufallsexperimente

Besteht ein zufälliger Vorgang aus mehreren, nacheinander ablaufenden Teilvorgängen (oder aus Teilvorgängen, die als nacheinander ablaufend interpretiert werden können), so spricht man von einem mehrstufigen Zufallsexperiment (Zufallsversuch).

Artikel lesen

Hypothesen und Entscheidungsfehler

Beurteilende Statistik setzt quantitatives Beschreiben von Grundgesamtheiten bzw. Stichproben voraus. Begründete Vermutungen über stochastische Eigenschaften von Grundgesamtheiten nennt man Hypothesen. Auf der Grundlage statistischer Tests wird entschieden, ob die zu überprüfende Hypothese abzulehnen (zu verwerfen) ist oder nicht.

9 Suchergebnisse

Fächer
  • Mathematik (9)
Klassen
  • 5. Klasse (3)
  • 6. Klasse (3)
  • 7. Klasse (3)
  • 8. Klasse (3)
  • 9. Klasse (3)
  • 10. Klasse (3)
  • Oberstufe/Abitur (6)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025