Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Mathematik
  3. 9 Stochastik
  4. 9.3 Wahrscheinlichkeitsrechnung
  5. 9.3.4 Zufallsgrößen und ihre Verteilung
  6. Bernoulli-Versuche

Bernoulli-Versuche

Zufallsversuche mit genau zwei möglichen Ergebnissen, d. h. Vorgänge mit zufälligem Ergebnis, bei denen nur zwischen Erfolg (Treffer) und Misserfolg (Niete) unterschieden wird, heißen Bernoulli-Versuche.

Ist p die Wahrscheinlichkeit für einen Erfolg, so beträgt die Wahrscheinlichkeit für einen Misserfolg 1 – p.

Mehrstufige Bernoulli-Versuche bezeichnet man als Bernoulli-Ketten.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Zufallsversuche (Zufallsexperimente) mit genau zwei möglichen Ergebnissen, d. h. Vorgänge mit zufälligem Ergebnis bei denen nur zwischen „Erfolg“ (Treffer) und „Misserfolg“ (Niete) unterschieden wird, heißen Bernoulli-Versuche (Bernoulli-Experimente).
Ist p die Wahrscheinlichkeit für einen Erfolg, so beträgt die Wahrscheinlichkeit für einen Misserfolg (als entsprechendes Gegenereignis) demzufolge 1 – p.

Vielfach kennzeichnet man den Erfolg durch eine „1“ und den Misserfolg durch eine „0“, sodass sich als abkürzende Schreibweisen ergeben:
  P   ( 1 ) = p   u n d   P ( 0 ) = 1 − p

Ein Bernoulli-Versuch ist beispielsweise das Werfen eines Würfels, wenn dabei nur zwischen den Ergebnissen „Es fällt eine Sechs (Treffer)“ und „Es fällt keine Sechs (Niete)“ unterschieden wird. In diesem Fall ist:
  P   ( 1 ) = 1 6   u n d   P ( 0 ) = 1 − 1 6 = 5 6
Auch das Überprüfen von Bauelementen, wobei man nur nach „arbeitet“ bzw. „arbeitet nicht“ unterscheidet, ist ein Beispiel für ein Bernoulli-Experiment.
Einen mehrstufigen Bernoulli-Versuch bezeichnet man als Bernoulli-Kette.

Die Bezeichnungen Bernoulli-Versuch, Bernoulli-Kette sowie bernoullische Formel (zur Berechnung von Wahrscheinlichkeiten bei Bernoulli-Ketten) wurden nach dem Schweizer Mathematiker JAKOB BERNOULLI gewählt.

  • Bernoulli-Versuch: Werfen eines Würfels

    milosluz - Fotolia.com

Lernhelfer (Duden Learnattack GmbH): "Bernoulli-Versuche." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/schuelerlexikon/mathematik/artikel/bernoulli-versuche (Abgerufen: 19. May 2025, 17:22 UTC)

Suche nach passenden Schlagwörtern

  • Bernoulli-Experiment
  • Bernoulli-Kette
  • Jakob Bernoulli
  • Bernoulli-Versuch
  • Bernoulli
  • bernoullische Formel
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Hypothesen und Entscheidungsfehler

Beurteilende Statistik setzt quantitatives Beschreiben von Grundgesamtheiten bzw. Stichproben voraus. Begründete Vermutungen über stochastische Eigenschaften von Grundgesamtheiten nennt man Hypothesen. Auf der Grundlage statistischer Tests wird entschieden, ob die zu überprüfende Hypothese abzulehnen (zu verwerfen) ist oder nicht.

Geometrische Verteilung

Die geometrische Verteilung ist ein Spezialfall der PASCALschen Verteilung, die ihren Namen zu Ehren BLAISE PASCALS (1623 bis 1662) erhielt.

Wahrscheinlichkeiten, Berechnen

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Mathematik - Berechnen von Wahrscheinlichkeiten für k Erfolge bei einer Bernoulli-Kette".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Daniel Bernoulli

* 08. Februar 1700 Groningen
† 17. März 1782 Basel

Auf mathematischem Gebiet beschäftigte sich DANIEL BERNOULLI vor allem mit Problemen der Wahrscheinlichkeitsrechnung und Statistik. Darüber hinaus arbeitete er über Reihen und Differenzialgleichungen.
Seine bedeutendsten wissenschaftlichen Leitungen erzielte er auf dem Gebiet der Hydromechanik, indem ihm die mathematische Beschreibung strömender Flüssigkeiten gelang.

Bernoulli-Experimente

Ein Zufallsexperiment mit nur zwei möglichen Ergebnissen heißt BERNOULLI-Experiment. Die beiden Ergebnisse werden Erfolg bzw. Misserfolg genannt und häufig mit 1 bzw. 0 gekennzeichnet.
Mit einem BERNOULLI-Experiment können zufällige Vorgänge in vielen Lebensbereichen hinreichend beschrieben werden, da oftmals nur interessiert, ob ein bestimmtes Ereignis eingetreten ist oder nicht.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025