Normalenvektoren einer Ebene im Raum

Normalenvektoren einer Ebene im Raum

Normalenvektoren einer Ebene im Raum

Aufgrund der eindeutig bestimmten Richtung eines Normalenvektors zu einer Ebene im Raum wird auch umgekehrt durch einen gegebenen Punkt P 0 und einen gegebenen Normalenvektor n diejenige Ebene im Raum eindeutig bestimmt, die durch P 0 geht und senkrecht zu n ist.

Für Abstandsprobleme wird oft ein Normaleneinheitsvektor n 0 verwendet, da dieser den Betrag 1 hat und sich damit zu Längenvergleichen anbietet. Ist n ein beliebiger Normalenvektor einer Ebene ε im Raum, so erhält man den zugehörigen Normaleneinheitsvektor, indem man den Normalenvektor durch seinen Betrag dividiert:
n 0 = n | n |

Zu jeder Ebene im Raum gibt es genau zwei Normaleneinheitsvektoren, die sich nur im Richtungssinn unterscheiden.

  • Ist eine Ebene ε im Raum durch ax + by + cz + d = 0 gegeben, so ist
    n = ( a b c )
    ein Normalenvektor von ε .

Für eine Ebene ε im Raum gilt:

  • Ist ε durch ε : x = p 0 + r a + s b gegeben, so kann man mithilfe des Vektorprodukts einen Normalenvektor von ε berechnen:
    n = a × b

Laut Definition des Vektorprodukts ist nämlich der das Vektorprodukt zweier Vektoren a u n d b bildende Vektor senkrecht zu a sowie senkrecht zu b und damit auch senkrecht zu der durch a u n d b aufgespannten Ebene.

Stand: 2010
Dieser Text befindet sich in redaktioneller Bearbeitung.

Lexikon Share
Mathe Note verbessern?
 

Kostenlos bei Duden Learnattack registrieren und ALLES 48 Stunden testen.

Kein Vertrag. Keine Kosten.

  • 40.000 Lern-Inhalte in Mathe, Deutsch und 7 weiteren Fächern
  • Hausaufgabenhilfe per WhatsApp
  • Original Klassenarbeiten mit Lösungen
  • Deine eigene Lern-Statistik
  • Kostenfreie Basismitgliedschaft
Beliebte Artikel
alle anzeigen

Einloggen