Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Mathematik
  3. 8 Stereometrie
  4. 8.6 Pyramidenstumpf und Kegelstumpf
  5. 8.6.0 Pyramidenstumpf und Kegelstumpf
  6. Kegelstumpf

Kegelstumpf

Wird ein gerader Kreiskegel von einer parallel zu Grundfläche verlaufenden Ebene geschnitten, so entsteht ein gerader Kegelstumpf. Die parallelen Flächen A G und A D sind zueinander ähnliche Kreise.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Wird ein gerader Kreiskegel von einer parallel zu Grundfläche verlaufenden Ebene geschnitten, so entsteht ein gerader Kreiskegelstumpf (kurz: Kegelstumpf) und ein Ergänzungskegel. Die parallelen Flächen A G und A D sind zueinander ähnliche Kreise. Für die Grundfläche und die Deckfläche gilt:
A G : A D = h   1 2 : h   2 2
h   1 ist dabei die Höhe des vollständigen Kegels, h   2 die Höhe des Ergänzungskegels. Des Weiteren gilt für die Länge der Seitenkante s des Kegelstumpfes:
s 2 = ( r 2 −     r 1 ) 2 +     h 2

Wird die Mantelfläche eines geraden Kreiskegels in einer Ebene abgewickelt, so entsteht der Ausschnitt eines Kreisrings. Der Flächeninhalt dieses Kreisringausschnitts entspricht dem Flächeninhalt des Mantels des Kegelstumpfes.
A   M = π   s ( r   2 + r   1 ) = 1 2 π   s ( d   2 + d   1 )

Für den Oberflächeninhalt des geraden Kegelstumpfes gilt dann:
A   O = π [ r 2 2 + r 1 2 + s ( r   2 + r   1 ) ]

Das Volumen des Kegelstumpfes ist die Differenz der Volumina des Kreiskegels und des Ergänzungskegels. Für das Volumen des Kegelstumpfes gilt dann:

V = 1 3 ( A G ⋅ h 1 − A D ⋅ h 2 ) V = 1 3 h ( A G + A G   A D + A D ) V = 1 3 π   h ( r   2 2 + r   2   r   1 + r   1 2 )

  • Schrägbild eines Kreiskegelstumpfes
  • Abwicklung des Mantels eines geraden Kreiskegelstumpfes
Lernhelfer (Duden Learnattack GmbH): "Kegelstumpf." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/schuelerlexikon/mathematik/artikel/kegelstumpf (Abgerufen: 11. July 2025, 12:58 UTC)

Suche nach passenden Schlagwörtern

  • Kreiskegelstumpf
  • interaktiv
  • Mathcad
  • Ergänzungskegel
  • Oberflächeninhalt
  • Berechnungsbeispiel
  • Deckfläche
  • Kreiskegel
  • Kegelstumpf
  • Rechenbeispiel
  • Grundfläche
  • Volumen
  • Mantelfläche
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Kreiszylinder

Einen Körper mit zwei zueinander kongruenten und parallelen Kreisen als Grund- und Deckfläche nennt man Kreiszylinder. Liegen die Mittelpunkte der Kreisflächen des Zylinders senkrecht übereinander, so handelt es sich um einen geraden Kreiszylinder. Man kann sich einen geraden Kreiszylinder auch durch Rotation eines Rechtecks um eine seiner Seiten entstanden vorstellen.

Kugel

Die Kugel ist die Menge aller Punkte des Raums, die von einem festen Punkt M, dem Mittelpunkt der Kugel, den gleichen Abstand r haben. Der Abstand heißt Radius der Kugel.

Kugelteile

Wird eine Kugel durch eine Ebene oder mehrere Ebenen geschnitten, so entstehen verschiedene Schnittfiguren.
Beim Schnitt einer Kugel durch eine Ebene entstehen zwei Kugelabschnitte (Kugelsegmente). Verläuft diese Schnittebene genau durch den Kugelmittelpunkt, entstehen zwei Halbkugeln.

Normalbilder

Die Bilder bei einer senkrechten Parallelprojektion heißen Normalbilder. Grund- und Aufriss eines Körpers sind spezielle Normalbilder. Meist wird eine spezielle Lage des Körpers gewählt, bei der möglichst viele Begrenzungsflächen parallel zu einer der Bildebenen sind. Da dann viele Kanten senkrecht zu einer Bildebene sind und dem zufolge als Punkt abgebildet werden, sind die Bilder oft nicht sehr anschaulich. So sind der Aufriss und Grundriss eines Würfels jeweils ein Quadrat.

Regelmäßige Polyeder

Die fünf regulären Polyeder haben in der Geschichte der Mathematik, der Philosophie und der Astronomie eine Rolle gespielt. Der griechische Philosoph PLATON und der Mathematiker und Astronom JOHANNES KEPLER suchten nach Zusammenhängen der regulären Polyeder mit realen Erscheinungen in der Welt, so etwa den Bahnen der Planeten. Nach PLATON heißen die fünf regulären Polyeder auch platonische Körper.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025