Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Mathematik
  3. 8 Stereometrie
  4. 8.6 Pyramidenstumpf und Kegelstumpf
  5. 8.6.0 Pyramidenstumpf und Kegelstumpf
  6. Pyramidenstumpf

Pyramidenstumpf

Wird eine Pyramide durch eine zur Grundfläche der Pyramide parallele Ebene geschnitten, so entstehen ein Pyramidenstumpf und die zugehörige Ergänzungspyramide.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Wird eine Pyramide durch eine zur Grundfläche der Pyramide parallele Ebene geschnitten, so entstehen ein Pyramidenstumpf und die zugehörige Ergänzungspyramide.

Die zueinander parallelen Grund- und Deckflächen des Pyramidenstumpfes haben den Abstand h mit
h = h 1 – h 2
( h 1 Höhe der Gesamtpyramide, h 2 Höhe der Ergänzungspyramide).

Die Grund- und die Deckfläche sind zueinander ähnlich. Für ihre Flächeninhalte gilt:
A G : A D = h 1 2 : h 2 2

Der Mantel eines Pyramidenstumpfes ist die Summe der trapezförmigen Seitenflächen. Für den Oberflächeninhalt eines Pyramidenstumpfes gilt:
A O = A G + A D + A M

Das Volumen eines Pyramidenstumpfes ergibt sich aus der Differenz des Volumens der gesamten Pyramide und der Ergänzungspyramide. Es gilt:
V = 1 3 h ( A G + A G A D + A D )

  • Schrägbild eines Pyramidenstumpfs
Lernhelfer (Duden Learnattack GmbH): "Pyramidenstumpf." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/schuelerlexikon/mathematik/artikel/pyramidenstumpf (Abgerufen: 04. October 2025, 10:10 UTC)

Suche nach passenden Schlagwörtern

  • interaktiv
  • Mathcad
  • Rechenbeispiel
  • Oberflächeninhalt
  • Pyramidenstumpf
  • Volumen
  • Berechnungsbeispiel
  • Ergänzungspyramide
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Verpackung


Manchmal braucht man für ein Geschenk eine passende Verpackung. So eine Verpackung lässt sich schnell selbst anfertigen.
Beispiele für eine Verpackung sind eine sechsseitiges Prisma und ein Tetraeder.

Würfel, allgemein

Ein Würfel besitzt sechs zueinander kongruente Quadrate als Begrenzungsflächen, die paarweise zueinander parallel liegen. Zur Berechnung des Oberflächeninhalts und des Volumens reicht daher zum Beispiel die Angabe der Länge der Körperkante des Würfels.

Geometrische Körper

Ein geometrischer Körper ist die Menge aller Punkte, Geraden und Ebenen des dreidimensionalen Raumes, die innerhalb eines vollständig abgeschlossenen Teils dieses Raumes liegen.
Die Summe der Flächeninhalte der Begrenzungsflächen bildet den Oberflächeninhalt, der vollständig umschlossene Raum das Volumen des Körpers.

Pyramiden und Kreiskegel, Darstellung

Pyramide und Kreiskegel kann man im Schrägbild bzw. im Zweitafelbild darstellen.
In Kavalierprojektion wird das Schrägbild sehr anschaulich dargestellt.
Bei einer senkrechten Zweitafelprojektion erfolgt die Darstellung gleichzeitig in zwei Ebenen.

Ellipsoid

Ein Ellipsoid ist ein Rotationskörper, der durch die Rotation einer Ellipse um eine ihrer Hauptsachsen entsteht.

Während bei einer Kugel alle drei räumlichen Ausdehnungen gleich sind, sind diese bei einem Ellipsoid verschieden.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025