Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Mathematik
  3. 8 Stereometrie
  4. 8.6 Pyramidenstumpf und Kegelstumpf
  5. 8.6.0 Pyramidenstumpf und Kegelstumpf
  6. Pyramidenstumpf

Pyramidenstumpf

Wird eine Pyramide durch eine zur Grundfläche der Pyramide parallele Ebene geschnitten, so entstehen ein Pyramidenstumpf und die zugehörige Ergänzungspyramide.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Wird eine Pyramide durch eine zur Grundfläche der Pyramide parallele Ebene geschnitten, so entstehen ein Pyramidenstumpf und die zugehörige Ergänzungspyramide.

Die zueinander parallelen Grund- und Deckflächen des Pyramidenstumpfes haben den Abstand h mit
h = h 1 – h 2
( h 1 Höhe der Gesamtpyramide, h 2 Höhe der Ergänzungspyramide).

Die Grund- und die Deckfläche sind zueinander ähnlich. Für ihre Flächeninhalte gilt:
A G : A D = h 1 2 : h 2 2

Der Mantel eines Pyramidenstumpfes ist die Summe der trapezförmigen Seitenflächen. Für den Oberflächeninhalt eines Pyramidenstumpfes gilt:
A O = A G + A D + A M

Das Volumen eines Pyramidenstumpfes ergibt sich aus der Differenz des Volumens der gesamten Pyramide und der Ergänzungspyramide. Es gilt:
V = 1 3 h ( A G + A G A D + A D )

  • Schrägbild eines Pyramidenstumpfs
Lernhelfer (Duden Learnattack GmbH): "Pyramidenstumpf." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/schuelerlexikon/mathematik/artikel/pyramidenstumpf (Abgerufen: 21. May 2025, 10:48 UTC)

Suche nach passenden Schlagwörtern

  • interaktiv
  • Mathcad
  • Rechenbeispiel
  • Oberflächeninhalt
  • Pyramidenstumpf
  • Volumen
  • Berechnungsbeispiel
  • Ergänzungspyramide
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Kreiszylinder

Einen Körper mit zwei zueinander kongruenten und parallelen Kreisen als Grund- und Deckfläche nennt man Kreiszylinder. Liegen die Mittelpunkte der Kreisflächen des Zylinders senkrecht übereinander, so handelt es sich um einen geraden Kreiszylinder. Man kann sich einen geraden Kreiszylinder auch durch Rotation eines Rechtecks um eine seiner Seiten entstanden vorstellen.

Kugel

Die Kugel ist die Menge aller Punkte des Raums, die von einem festen Punkt M, dem Mittelpunkt der Kugel, den gleichen Abstand r haben. Der Abstand heißt Radius der Kugel.

Kugelteile

Wird eine Kugel durch eine Ebene oder mehrere Ebenen geschnitten, so entstehen verschiedene Schnittfiguren.
Beim Schnitt einer Kugel durch eine Ebene entstehen zwei Kugelabschnitte (Kugelsegmente). Verläuft diese Schnittebene genau durch den Kugelmittelpunkt, entstehen zwei Halbkugeln.

Normalbilder

Die Bilder bei einer senkrechten Parallelprojektion heißen Normalbilder. Grund- und Aufriss eines Körpers sind spezielle Normalbilder. Meist wird eine spezielle Lage des Körpers gewählt, bei der möglichst viele Begrenzungsflächen parallel zu einer der Bildebenen sind. Da dann viele Kanten senkrecht zu einer Bildebene sind und dem zufolge als Punkt abgebildet werden, sind die Bilder oft nicht sehr anschaulich. So sind der Aufriss und Grundriss eines Würfels jeweils ein Quadrat.

Regelmäßige Polyeder

Die fünf regulären Polyeder haben in der Geschichte der Mathematik, der Philosophie und der Astronomie eine Rolle gespielt. Der griechische Philosoph PLATON und der Mathematiker und Astronom JOHANNES KEPLER suchten nach Zusammenhängen der regulären Polyeder mit realen Erscheinungen in der Welt, so etwa den Bahnen der Planeten. Nach PLATON heißen die fünf regulären Polyeder auch platonische Körper.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025