Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Mathematik
  3. 8 Stereometrie
  4. 8.4 Prisma und Kreiszylinder
  5. 8.4.1 Begriffe und Formeln
  6. Kreiszylinder

Kreiszylinder

Einen Körper mit zwei zueinander kongruenten und parallelen Kreisen als Grund- und Deckfläche nennt man Kreiszylinder. Liegen die Mittelpunkte der Kreisflächen des Zylinders senkrecht übereinander, so handelt es sich um einen geraden Kreiszylinder. Man kann sich einen geraden Kreiszylinder auch durch Rotation eines Rechtecks um eine seiner Seiten entstanden vorstellen.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Einen Körper mit zwei zueinander kongruenten und parallelen Kreisen als Grund- und Deckfläche nennt man Kreiszylinder. Liegen die Mittelpunkte der Kreisflächen des Zylinders senkrecht übereinander, so handelt es sich um einen geraden Kreiszylinder. Man kann sich einen geraden Kreiszylinder auch durch Rotation eines Rechtecks um eine seiner Seiten entstanden vorstellen.

Bild

Die Mantelfläche eines geraden Kreiszylinders lässt sich abwickeln, d. h. in eine Ebene ausbreiten. Die Mantelfläche ist ein Rechteck mit den Kantenlängen h (Höhe des Kreiszylinders) und u (Umfang der Grundfläche).
Der Oberflächeninhalt eines geraden Kreiszylinders ist die Summe aus dem doppelten Flächeninhalt der Grundfläche und dem Flächeninhalt des Mantels:
A O = 2 A G + A   M
Für den Mantelflächeninhalt gilt:
A M = u ⋅ h = 2 π r ⋅ h
Für den Flächeninhalt der Grundfläche eines Kreiszylinders gilt:
A G = π r 2
A O = 2   π   r 2 + 2   π   r   h = 2   π   r ( r + h )

  • Netz eines Zylinders

Vergrößert man bei einem Prisma mit einem regelmäßigen n-Eck als Grundfläche die Anzahl der Seitenflächen, so nähert es sich immer mehr der Form eines Zylinders an. Das Volumen eines Kreiszylinders kann daher nach der Formel für die Berechnung des Prismenvolumens berechnet werden:
V = A G ⋅ h = π   r 2   h

  • Volumen eines Zylinders

Schneidet man aus einem Kreiszylinder einen zur Achse symmetrischen kleineren Kreiszylinder gleicher Höhe aus, so entsteht ein Hohlzylinder. Für den Oberflächeninhalt eines Hohlzylinders gilt:
A O ,   H o h l z y l i n d e r = A O ,   g r o ß e r   Z y l i n d e r + A M ,   k l e i n e r   Z y l i n d e r − 2 ⋅ A G ,   k l e i n e r   Z y l i n d e r
A O = 2 π ⋅ ( r 2 2   +   r 2 h   +   r 1 h   −   r 1 2 )
Die Formel für das Volumen eines Hohlzylinders lässt sich sowohl aus der Differenz der Volumina der beiden Zylinder als auch über die Flächeninhaltsformel für Kreisringe ableiten:
V = A G ⋅ h = π ( r 2 2 − r 1 2 ) ⋅ h

  • Hohlzylinder
Lernhelfer (Duden Learnattack GmbH): "Kreiszylinder." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/schuelerlexikon/mathematik/artikel/kreiszylinder (Abgerufen: 09. June 2025, 05:21 UTC)

Suche nach passenden Schlagwörtern

  • interaktiv
  • Mathcad
  • Hohlzylinder
  • Rechenbeispiel
  • Kreiszylinder
  • Oberflächeninhalt
  • Volumen
  • Berechnungsbeispiel
  • Mantelfläche
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Verpackung


Manchmal braucht man für ein Geschenk eine passende Verpackung. So eine Verpackung lässt sich schnell selbst anfertigen.
Beispiele für eine Verpackung sind eine sechsseitiges Prisma und ein Tetraeder.

Würfel, allgemein

Ein Würfel besitzt sechs zueinander kongruente Quadrate als Begrenzungsflächen, die paarweise zueinander parallel liegen. Zur Berechnung des Oberflächeninhalts und des Volumens reicht daher zum Beispiel die Angabe der Länge der Körperkante des Würfels.

Geometrische Körper

Ein geometrischer Körper ist die Menge aller Punkte, Geraden und Ebenen des dreidimensionalen Raumes, die innerhalb eines vollständig abgeschlossenen Teils dieses Raumes liegen.
Die Summe der Flächeninhalte der Begrenzungsflächen bildet den Oberflächeninhalt, der vollständig umschlossene Raum das Volumen des Körpers.

Francesco Bonaventura Cavalieri

FRANCESCO BONAVENTURA CAVALIERI (1598 bis 1647)
* um 1598 Italien
† 1647

CAVALIERI war ein Schüler GALILEIs. Er führte die Gedanken von ARCHIMEDES und KEPLER zur Inhaltsbestimmung von Körpern und Flächen weiter und schuf eine Theorie der „Indivisiblen“ (indivisibel (lat.) – nicht teilbar).

Kreiszylinder und Prismen, Darstellung

Kreiszylinder und Prismen können sowohl liegend als auch stehend im Schrägbild bzw. im Zweitafelbild dargestellt werden.
In Kavalierprojektion wird das Schrägbild sehr anschaulich dargestellt.

Bei einer senkrechten Zweitafelprojektion erfolgt die Darstellung gleichzeitig in zwei Ebenen.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025