Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Mathematik
  3. 8 Stereometrie
  4. 8.5 Pyramide und Kreiskegel
  5. 8.5.1 Begriffe und Formeln
  6. Kreiskegel

Kreiskegel

Werden alle Punkte eines Kreises mit einem Punkt S außerhalb der Kreisebene verbunden, so schließen diese Strecken gemeinsam mit dem Kreis einen Körper ein, der Kreiskegel genannt wird. Er hat einen Kreis als ebene Grundfläche und eine gekrümmte Mantelfläche.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Erklärvideos und Übungen zum Thema Kegel gibt es hier!

Werden alle Punkte eines Kreises mit einem Punkt S außerhalb der Kreisebene verbunden, so schließen diese Strecken gemeinsam mit dem Kreis einen Körper ein, der Kreiskegel genannt wird. Er hat einen Kreis als ebene Grundfläche und eine gekrümmte Mantelfläche.

Der Punkt S heißt Spitze des Kreiskegels. Der Abstand der Spitze S von der Grundfläche heißt Höhe. Die Verbindungsstrecken von den Kreispunkten zur Spitze heißen Mantellinien.
Für gerade Kreiskegel gilt:
s 2 = r 2 +   h 2

  • Kreiskegel

Liegt die Spitze eines Kreiskegels senkrecht über dem Mittelpunkt des Grundkreises, so heißt der Kreiskegel gerade, ansonsten heißt er schief.
Wird der Kegelmantel längs einer Mantellinie aufgeschnitten und in einer Ebene abgewickelt, so entsteht ein Kreissektor, der zusammen mit der Grundfläche das Netz des Kegels bildet.
Für die Bogenlänge b des durch den Mantel gebildeten Kreissektors mit der Mantellinie s und dem Mittelpunktswinkel (Zentriwinkel) α gilt:
b = 2   π   s ⋅ α 360 °
Da die Bogenlänge gleich dem Umfang u des Grundkreises des Kegels ist, ergibt sich:
b = u = 2   π   r = 2   π   s ⋅ α 360 °   u n d   d a m i t   r = s ⋅ α 360 °

  • Netz eines Kreiskegels

Ein Kegel entsteht, wenn ein rechtwinkliges Dreieck um eine seiner Katheten rotiert. Die Gerade durch diese Kathete heißt Achse des Kegels. Jede Schnittebene durch die Achse ist eine Symmetrieebene des Kegels.

  • Rotationskörper

Die Oberfläche A O eines Kegels setzt sich aus seiner Grundfläche A G und seiner Mantelfläche A M zusammen. Der Mantel ist ein Kreissektor mit dem Zentriwinkel α und der Mantellinie s als Radius, sodass gilt:
A M = π   s 2 ⋅ α 360 °
Die Bogenlänge b des Sektors ist gleich dem Umfang u des Grundkreises.
Es gilt :
r = s ⋅ α 360 °   u n d   d a m i t   f o lg t   A M = π   r   s
Der Oberflächeninhalt A O eines geraden Kreiskegels mit dem Grundkreisradius r und der Mantellinie s ist gleich der Summe aus den Inhalten des Grundkreises A G und der Mantelfläche A M :
A G = π   r 2     A M = π   r   s     A O = A G + A M = π   r ( r + s )

  • Kreiskegelnetz

Zur Gewinnung einer Formel für das Kegelvolumen sind die gleichen Überlegungen wie bei der Zylinderformel möglich. Wenn bei einer Pyramide mit einem regelmäßigen n-Eck als Grundfläche die Anzahl der Seiten immer größer wird, nähert sie sich immer mehr der Form eines Kegels an. Die Formel zur Berechnung des Volumens einer Pyramide gilt in analoger Weise auch für einen Kegel.
Das Volumen eines Kreiskegels ist gleich einem Drittel des Produktes aus dem Inhalt der Grundfläche und der Höhe:
V = 1 3 ⋅ A G ⋅ h = 1 3   π   r 2   h

  • Von der Pyramide zum Kreiskegel
Lernhelfer (Duden Learnattack GmbH): "Kreiskegel." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/schuelerlexikon/mathematik/artikel/kreiskegel (Abgerufen: 20. May 2025, 07:16 UTC)

Suche nach passenden Schlagwörtern

  • Achse
  • interaktiv
  • Mathcad
  • Bogenlänge
  • Oberflächeninhalt
  • Berechnungsbeispiel
  • Mantellinie
  • Oberfläche
  • Kreiskegel
  • Rechenbeispiel
  • Grundfläche
  • Volumen
  • Mantelfläche
  • Kreissektor
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Geometrische Körper

Ein geometrischer Körper ist die Menge aller Punkte, Geraden und Ebenen des dreidimensionalen Raumes, die innerhalb eines vollständig abgeschlossenen Teils dieses Raumes liegen.
Die Summe der Flächeninhalte der Begrenzungsflächen bildet den Oberflächeninhalt, der vollständig umschlossene Raum das Volumen des Körpers.

Apollonios

APOLLONIOS VON PERGE (um 262 bis 190 v. Chr.), griechisch-hellenistischer Mathematiker und Astronom
* um 262 v. Chr. Perge (Pamphylien, heutige Türkei);
† um 190 v. Chr.

APOLLONIOS VON PERGE, auch „der große Geometer“ genannt, war ein Schüler EUKLIDs. Er beschäftigte sich sowohl mit arithmetischen Berechnungen als auch mit der Statistik. Besonders zu erwähnen ist sein Hauptwerk „Conica“, in dem er die Ergebnisse der antiken Kegelschnittlehre zusammenfasste.
APOLLONIOS lieferte auch wichtige Beiträge zur Astronomie. Speziell wandte er geometrische Modelle auf die Planentenbewegung an.

Pyramiden und Kreiskegel, Darstellung

Pyramide und Kreiskegel kann man im Schrägbild bzw. im Zweitafelbild darstellen.
In Kavalierprojektion wird das Schrägbild sehr anschaulich dargestellt.
Bei einer senkrechten Zweitafelprojektion erfolgt die Darstellung gleichzeitig in zwei Ebenen.

Ellipsoid

Ein Ellipsoid ist ein Rotationskörper, der durch die Rotation einer Ellipse um eine ihrer Hauptsachsen entsteht.

Während bei einer Kugel alle drei räumlichen Ausdehnungen gleich sind, sind diese bei einem Ellipsoid verschieden.

Wissenstest - Pyramide, Kegel, Kugel, Polyeder

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Mathematik - Pyramide / Kegel / Kugel / Polyeder".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025