Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Mathematik
  3. 7 Planimetrie
  4. 7.1 Grundbegriffe
  5. 7.1.1 Ebene, Linie, Punkt, Gerade, Strahl und Strecke
  6. Kollineare Punkte

Kollineare Punkte

Die Kollinearität beschreibt die Lagebeziehungen mehrerer Punkte.
Zwei Punkte sind stets kollinear, da sie eindeutig eine Gerade festlegen – die Verbindungsgerade. Drei und mehr Punkte heißen kollinear genau dann, wenn sie auf ein und derselben Geraden liegen.
Somit sind alle Punkte, die in einer Geraden enthalten sind, kollinear.
Die Verbindungsstrecken dreier nicht kollinearer Punkte bilden ein Dreieck.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Die Kollinearität beschreibt die Lagebeziehungen mehrerer Punkte.
Zwei Punkte sind stets kollinear, da sie eindeutig eine Gerade festlegen – die Verbindungsgerade (Bild 1).
Drei und mehr Punkte heißen kollinear genau dann, wenn sie auf ein und derselben Geraden liegen.
Somit sind alle Punkte, die in einer Geraden enthalten sind, kollinear.
Die Verbindungsstrecken dreier nicht kollinearer Punkte bilden ein Dreieck.
Lagebeziehungen mehrerer kolineare Punkte werden mit der Relation „... liegt zwischen ... und ...“ (Zwischenrelation) näher charakterisiert. Diese Relation wird als Grundrelation entsprechend unserer Anschauung benutzt, also nicht definiert.

  • Verbindungsgerade zweier Punkte

Folgende Eigenschaften der Relation werden im Einklang mit der Erfahrung als gegeben in Axiomen vorausgesetzt (Bild 2):

  • Von drei verschiedenen Punkten einer Geraden liegt genau ein Punkt zwischen den beiden anderen.
     
  • Zwischen zwei Punkten A und B einer Geraden gibt es stets mindestens einen weiteren Punkt X der Geraden.
     
  • Außerdem gibt es Punkte Y und Z auf der Geraden, sodass A zwischen Y und B liegt und dass B zwischen A und Z liegt.

Sind vier Punkte nicht kollinear bedeutet das, dass jeweils nicht je drei von ihnen auf einer Geraden liegen oder nicht mehr als zwei Punkte eine gemeinsame Gerade haben dürfen. Es gibt dann sechs Verbindungsstrecken. Sind fünf Punkte nicht kollinear, so gibt es zehn Verbindungsstrecken. Allgemein gilt:
Die Anzahl der Verbindungsstrecken von n nicht kollinearen Punkten beträgt:
a n = 1 2 ⋅ n ( n − 1 )

  • Lagebeziehung mehrerer kollinearer Punkte
Lernhelfer (Duden Learnattack GmbH): "Kollineare Punkte." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/schuelerlexikon/mathematik/artikel/kollineare-punkte (Abgerufen: 20. May 2025, 07:47 UTC)

Suche nach passenden Schlagwörtern

  • interaktiv
  • Simulation
  • Punkte
  • nicht kollineare Punkte
  • kollineare Punkte
  • Verbindungsstrecke
  • Verbindungsgerade
  • Geonet
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Funktionsbegriff

Der Funktionsbegriff ist von zentraler Bedeutung für die gesamte Mathematik und spielt auch bei Anwendungen der Mathematik in Naturwissenschaft und Technik sowie in Wirtschaft und Gesellschaft eine wichtige Rolle. Seine Entwicklung zur heute gebräuchlichen Form hat Jahrhunderte gedauert. Die Namen bekannter Mathematiker sind mit diesem Prozess eng verbunden.
Unter einer Funktion f versteht man eine eindeutige Zuordnung (Abbildung), die jedem Element x aus einer Menge D f eindeutig ein Element y aus einer Menge W f zuordnet. D f heißt der Definitionsbereich, W f der Wertebereich der Funktion f. Man nennt x ∈ D f ein Argument, das zugeordnete Element y ∈ W f den Funktionswert von x bei der Funktion f. Als Kurzschreibweise gibt man die Funktionsgleichung u.a. in der Form y = f ( x ) an.

Funktionenklassen

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Mathematik - Funktionenklassen".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Quadratische Funktionen

Eine Funktion mit einer Gleichung der Form
  y = f ( x ) = a x 2 + b x + c   ( mit  a ≠ 0,       x ∈ ℝ )
oder einer Gleichung, die durch äquivalentes Umformen in diese Form überführt werden kann, heißt quadratische Funktion.
Dabei nennt man a x 2 das quadratische Glied, bx das lineare Glied und c das absolute Glied der Funktionsgleichung.
Der Graph einer quadratischen Funktion ist eine Parabel.

Funktionen mit der Gleichung y = mx

Jeder direkt proportionale Zusammenhang zwischen zwei Größen x und y kann durch eine spezielle lineare Funktion mit der Gleichung
  y = f ( x ) = m x   ( m x ≠ 0 )
beschrieben werden.
Definitonsbereich und Wertevorrat (Wertebereich) von f ist die Menge der reellen Zahlen ℝ . Der Graph von f ist eine Gerade, die durch den Koordinatenursprung O verläuft.

Betragsfunktion

Die Betragsfunktion ist eine stückweise erklärte stetige Funktion. Sie ist folgendermaßen definiert:
  f   ( x ) = {     x   für  x ≥ 0 − x   für  x < 0

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025