Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Mathematik
  3. 3 Zahlen und Rechnen
  4. 3.7 Größen
  5. 3.7.3 Masseeinheiten
  6. Masseeinheiten

Masseeinheiten

Die Basiseinheit für die Masse ist das Kilogramm.
Für größere oder kleinere Massen verwendet man Einheiten, die durch Vervielfachen mit Potenzen von 10 aus dem Kilogramm abgeleitet sind, wie z. B. Tonne (t), Dezitonne (dt), Gramm (g) und Milligramm (mg).

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Die Basiseinheit für die Masse ist das Kilogramm (kg).
Für größere oder kleinere Massen verwendet man Einheiten, die durch Vervielfachen mit Potenzen von 10 aus dem Kilogramm abgeleitet sind, wie z. B. Tonne (t), Dezitonne (dt), Gramm (g) und Milligramm (mg).

Das (metrische) Pfund (Pfd.), das 1858 vom Deutschen Zollverein eingeführt wurde, und 500 g entspricht, ist heute keine gesetzlich zulässige Einheit mehr. Das Gleiche gilt für den Zentner (1 Ztr. = 100 Pfd.).

Für das Umrechnen von Masseeinheiten gelten folgende Umrechnungsfaktoren:
1 t = 10 dt = 1000 kg = 10 6 g = 10 9 m g

Bei Gold und Edelsteinen wird als Einheit auch das Karat (k) verwendet. Dabei gilt:
1 k = 2 · 10 − 4 kg = 0,0002 kg = 0,2 g

In der folgenden Tabelle sind die Massen einiger Körper aus Natur und Technik angegeben.

Bild

  • James Steidl - Fotolia.com

Lernhelfer (Duden Learnattack GmbH): "Masseeinheiten." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/schuelerlexikon/mathematik/artikel/masseeinheiten (Abgerufen: 20. May 2025, 13:28 UTC)

Suche nach passenden Schlagwörtern

  • Rauminhalte
  • Karat
  • Kilogramm
  • Masse
  • Einheit
  • Volumina
  • Pfund
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Geometrische Körper

Ein geometrischer Körper ist die Menge aller Punkte, Geraden und Ebenen des dreidimensionalen Raumes, die innerhalb eines vollständig abgeschlossenen Teils dieses Raumes liegen.
Die Summe der Flächeninhalte der Begrenzungsflächen bildet den Oberflächeninhalt, der vollständig umschlossene Raum das Volumen des Körpers.

Länge

Können zwei Strecken mit einer Bewegung aufeinander abgebildet werden, sind sie deckungsgleich und damit gleich lang.
Beim Messen der Länge einer Strecke wird ermittelt, wie oft man eine Einheitsstrecke auf der zu messenden Strecke lückenlos hintereinanderlegen kann. Die Streckenlänge wird als Produkt aus Zahlenwert und Einheit angegeben.

Historische Maße

Man bestimmte Längen nach menschlichen Körperteilen, wofür z. B. die Maße Elle oder Fuß stehen. Für die Einheit Elle gab es allein in Deutschland 132 verschiedene Maßangaben.
Flächen bestimmte man zunächst nach einer gewissen Arbeitsleistung, worauf z. B. Einheiten hinweisen wie Tagwerk, Joch oder Morgen. Charakteristisch ist die regionale Unterschiedlichkeit der Maße.

Flächeneinheiten

Die Basiseinheit für Flächen ist der Quadratmeter ( m 2 ). Für größere oder kleinere Flächen verwendet man Einheiten, die durch Vervielfachen mit Potenzen von 100 = 10 2 aus dem Quadratmeter abgeleitet sind, wie z. B. Quadratkilometer ( k m 2 ), Hektar (ha), Ar (a), Quadratdezimeter ( d m 2 ), Quadratzentimeter
( c m 2 ), Quadratmillimeter ( m m 2 ).

Vektorielle Größen

In der Mathematik unterscheidet man skalare und vektorielle Größen. Skalare Größen (Skalare) sind richtungsunabhängig. Zu diesen Größen gehören z. B. Masse, Zeit und Währung.
Größen, bei denen die messbare Eigenschaft sowohl durch einen Betrag als auch durch eine Richtung gekennzeichnet ist, nennt man gerichtete oder vektorielle Größen. Beispiele für solche vektoriellen Größen sind Kraft, Geschwindigkeit oder Beschleunigung.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025