Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Mathematik
  3. 3 Zahlen und Rechnen
  4. 3.8 Rechnen mit Näherungswerten
  5. 3.8.2 Rechnen mit Näherungswerten
  6. Näherungswerte, Rechnen

Näherungswerte, Rechnen

In der Praxis ist es nicht immer möglich noch zweckmäßig, für eine Größe einen absolut genauen Wert anzugeben. Man arbeitet dann mit einem Näherungswert.
Näherungswerte kommen vor

  • als Ergebnisse von Schätzungen und Überschlagsrechnungen,
  • als Maßzahlen gemessener Größen,
  • als Resultate von Rundungen,
  • als Angaben für irrationale Zahlen.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

In der Praxis ist es nicht immer möglich noch zweckmäßig, für eine Größe einen absolut genauen Wert anzugeben. Man arbeitet dann mit einem Näherungswert.
Näherungswerte kommen vor

  • als Ergebnisse von Schätzungen und Überschlagsrechnungen,
  • als Maßzahlen gemessener Größen,
  • als Resultate von Rundungen,
  • als Angaben für irrationale Zahlen.

Bei einem Näherungswert heißen alle Ziffern, die mit denen des genauen Wertes übereinstimmen, zuverlässige Ziffern. Eine (letzte) Ziffer gilt auch dann als zuverlässig, wenn eine Rundung des genauen Wertes an dieser Stelle sie bestätigen würde.
Durch Anwenden der Rundungsregeln erhält man im Allgemeinen Näherungswerte, in denen alle Ziffern zuverlässig sind.
Wenn bei einem Näherungswert kein Fehler angegeben ist, geht man davon aus, dass er nur zuverlässige Ziffern enthält, die Abweichungen also nicht größer als 0,5 Einheiten der als letztes angegebenen Stelle ist.

Regeln für Multiplikation und Division von Näherungswerten

  1. Ein Produkt oder Quotient von Näherungswerten wird mit so vielen wesentlichen Ziffern angegeben wie der Faktor mit der geringsten Anzahl von wesentlichen Ziffern besitzt.
  2. Man verwende beim Ergebnis eine passende Maßeinheit, sodass ein Komma gesetzt werden kann.
  3. Bei Zwischenergebnissen verwende man mindestens eine Ziffer mehr (eine sogenannte Schutzziffer).
Lernhelfer (Duden Learnattack GmbH): "Näherungswerte, Rechnen." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/schuelerlexikon/mathematik/artikel/naeherungswerte-rechnen (Abgerufen: 20. May 2025, 16:37 UTC)

Suche nach passenden Schlagwörtern

  • Schutzziffer
  • Näherungswert
  • Rundungsregeln
  • Schätzungen
  • zuverlässige Ziffern
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Betragsfunktion

Die Betragsfunktion ist eine stückweise erklärte stetige Funktion. Sie ist folgendermaßen definiert:
  f   ( x ) = {     x   für  x ≥ 0 − x   für  x < 0

Irrationale Zahlen, Historisches

PYTHAGORAS selbst oder einer seiner Schüler entdeckte, dass bei einem Quadrat das Verhältnis von Seitenlänge und Diagonalenlänge nicht als Bruch zweier natürlicher Zahlen dargestellt werden kann. Beide Strecken haben kein gemeinsames Maß, sie sind inkommensurabel.
Diese Entdeckung erschütterte ganz erheblich das Weltbild der Pythagoreer, die angenommen hatten, dass sich jedes Phänomen in der Sprache der natürlichen Zahlen formulieren ließe.

Rationale Zahlen, Begriff und Darstellung

Die Menge der rationalen Zahlen ℚ enthält als Teilmenge die Menge der natürlichen Zahlen ℕ , die Menge der ganzen Zahlen ℤ und die Menge der Bruchzahlen ℚ + (Bild 1).
Die Relationen und Rechengesetze, die in diesen Zahlenbereichen gelten, gelten auch im Bereich der rationalen Zahlen.
Rationale Zahlen werden auf einer Zahlengeraden dargestellt.

Reelle Zahlen, Rechnen

Im Bereich der reellen Zahlen sind die Addition, die Subtraktion, die Multiplikation und die Division (außer durch 0) uneingeschränkt ausführbar. Es gelten die gleichen Gesetze und Regeln wie im Bereich der rationalen Zahlen.

Heron-Verfahren

HERON VON ALEXANDRIA, er lebte etwa Ende des 1. Jh. in Alexandria, entdeckte ein Verfahren zur Berechnung einer Quadratwurzel, indem er dieses Problem geometrisch interpretierte.
Die Berechnung von x = A entspricht der Aufgabe, die Seitenlänge x eines Quadrates bei bekanntem Flächeninhalt A zu ermitteln.
HERON betrachtete eine Folge von Rechtecken, die alle den Flächeninhalt A haben und deren Seitenlängen sich immer mehr annähern, indem er jeweils das arithmetische Mittel der vorhergehenden Seitenlängen berechnete. Dadurch konnte er x durch schrittweise Annäherung beliebig genau bestimmen.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025