Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Mathematik
  3. 7 Planimetrie
  4. 7.9 Kreis
  5. 7.9.3 Inkreis und Umkreis von Vielecken
  6. Sehnenviereck

Sehnenviereck

Besitzt ein Viereck einen Umkreis, so nennt man es Sehnenviereck.
Alle gleichschenkligen Trapeze, alle Rechtecke und damit auch alle Quadrate besitzen einen Umkreis.
Unter dem Umkreis eines n-Ecks versteht man den Kreis, der durch alle Eckpunkte des n-Ecks geht. Die Seiten des n-Ecks sind Sehnen des Umkreises.
Für alle Sehnenvierecke gilt folgender Satz:
Die Summe gegenüberliegender Winkel im Sehnenviereck ist 180°.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Besitzt ein Viereck einen Umkreis, so nennt man es Sehnenviereck (Bild 1).

Alle gleichschenkligen Trapeze, alle Rechtecke und damit auch alle Quadrate besitzen einen Umkreis.
Unter dem Umkreis eines n-Ecks versteht man den Kreis, der durch alle Eckpunkte des n-Ecks geht. Die Seiten des n-Ecks sind Sehnen des Umkreises.
Für alle Sehnenvierecke gilt folgender Satz:

Die Summe gegenüberliegender Winkel im Sehnenviereck ist 180°.

  • Sehnenvierecke

Bewiesen wird der Satz für den Fall, dass der Mittelpunkt des Umkreises innerhalb des Sehnenvierecks liegt (Bild 2).

Voraussetzung:
A, B, C und D liegen auf einem Kreis um M, d. h.
M A ¯ = M B ¯ = M C ¯ = M D ¯ = r

Behauptung:
∢ D A B + ∢ B C D = ∢ A B C + ∢ C D A = 180 °

Beweis:
In den gleichschenkligen Dreiecken ABM, BCM, CDM und DAM sind die Basiswinkel paarweise zueinander kongruent.
Dann ist ∢ D A B + ∢ B C D = α + β + γ + δ =     S und auch ∢ A B C + ∢ C D A = α + β + γ + δ =   S .
Da die Innenwinkelsumme im Viereck 360 ° ist, gilt 2 S = 360 ° , also  S = 180 ° . (w. z. b. w.)

  • Beweisfigur

Für die anderen beiden Fälle (M liegt auf einer Seite des Sehnenvierecks oder außerhalb des Sehnenvierecks) verläuft der Beweis analog.

Alle regelmäßigen Vielecke besitzen einen Umkreis, was häufig zu ihrer Konstruktion verwendet wird.
In einen Umkreis gezeichnete Vielecke heißen einbeschriebene Vielecke.

Lernhelfer (Duden Learnattack GmbH): "Sehnenviereck." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/schuelerlexikon/mathematik/artikel/sehnenviereck (Abgerufen: 20. May 2025, 09:39 UTC)

Suche nach passenden Schlagwörtern

  • Rechteck
  • Sehne
  • Viereck
  • Berechnung
  • Sehnenviereck
  • Umkreis
  • einbeschrieben
  • Trapez
  • Quadrat
  • Rechenbeispiel
  • Excel-Beispiel
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Winkel am Kreis

Ein Winkel heißt Mittelpunktswinkel (Zentriwinkel), wenn sein Scheitel im Kreismittelpunkt liegt, Umfangswinkel (Peripheriewinkel), wenn sein Scheitel auf dem Kreis liegt und seine Schenkel den Kreis schneiden, Sehnen-Tangenten-Winkel, wenn sein Scheitel auf dem Kreis liegt und ein Schenkel den Kreis schneidet, der andere den Kreis berührt.

Kreiszahl

Der Umfang eines Kreises ist proportional zu seinem Durchmesser.
Der Proportionalitätsfaktor heißt Kreiszahl und wird mit dem griechischen Buchstaben π (gesprochen: pi) bezeichnet.

Sehnensatz

Schneiden in einem Kreis zwei Sehnen einander, so ist das Produkt der beiden Abschnitte auf der einen Sehne gleich dem Produkt der Abschnitte auf der anderen Sehne.

Satz des Thales

Satz des Thales:
Jeder Umfangswinkel über einem Halbkreis (bzw. über dem Durchmesser eines Kreises) ist ein rechter Winkel.

Wissenstest - Kreis

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Mathematik - Kreis".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025