Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Physik Abitur
  3. 2 Mechanik
  4. 2.6 Impuls und Drehimpuls
  5. 2.6.1 Kraftstoß, Impuls und Impulserhaltungssatz
  6. Rückstoß

Rückstoß

Wird z.B. aus einer Waffe ein Geschoss abgefeuert, so ist ein Rückstoß festzustellen, d.h. die Waffe bewegt sich ruckartig in der entgegengesetzten Richtung zum Geschoss. Dieser Effekt spielt nicht nur in der Waffentechnik eine Rolle, sondern auch in der Tierwelt, bei der Fortbewegung von Flugzeugen und Raketen oder beim Antrieb von Schiffen. Das Auftreten eines Rückstoßes kann mithilfe des Impulserhaltungssatzes erklärt werden.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Der Rüchstoß spielt nicht nur in der Waffentechnik eine Rolle, sondern z.B. auch

  • bei der Fortbewegung von Quallen,
  • bei der Fortbewegung von Flugzeugen und Raketen,
  • beim Antrieb von Schiffen,
  • beim Antrieb von Ruder- und Paddelbooten

und an vielen anderen Stellen, beispielsweise auch bei Spielzeug.

Bild 2 zeigt dazu ein einfaches Beispiel: Ein Luftballon wird aufgeblasen und mit einer Düse verbunden. Die in der einen Richtung ausströmende Luft bewirkt eine Bewegung des kleinen Rennautos in der entgegengesetzten Richtung.

Das Auftreten eines Rückstoßes kann mithilfe des Impulserhaltungssatzes erklärt werden. Einbezogen werden kann auch das Wechselwirkungsgesetz oder eine Bilanz der Kraftstöße.

  • Ein Spielzeugauto wird durch ausströmende Luft bewegt: Die Luft strömt in der einen Richtung durch eine Düse aus, das Auto bewegt sich in der entgegengesetzten Richtung.

    L. Meyer, Potsdam

Physikalische Grundlagen

Wir betrachten als Beispiel den Abschuss eines Geschosses aus einer Pistole (Bild 3). Pistole und Geschoss bilden ein abgeschlossenes System mit dem Gesamtimpuls null. Der Impuls bleibt nach dem Impulserhaltungssatz auch dann null, wenn im System innere Kräfte wirken, also das Geschoss abgefeuert wird. Es gilt für die Impulse:

p → Gesamt = p → Pistole + p → Geschoss = 0 → + 0 → = 0 → Dafür kann man auch schreiben: m P ⋅ v → P + m G ⋅ v → G = 0 → oder m P ⋅ v → P = −   m G ⋅ v → G Beachtet man die entgegengesetzte Richtung der beiden Geschwindigkeiten , so gilt: m P ⋅ v P =   m G ⋅ v G

In Worten: Die Beträge der Impulse beider Körper des Systems sind gleich groß, aber entgegengesetzt gerichtet.
Betrachtet man die Impulsänderung, so kann man davon ausgehen, dass eine Impulsänderung mit einem Kraftstoß verbunden ist. Für die Pistole würde dann gelten:

Die Impulsänderung Δ p beträgt für die Pistole: Δ p = m P ⋅ v P Sie ist gleich einem Kraftstoß F ¯ ⋅ Δ t , der als Rückstoß bezeichnet wird: F ¯ ⋅ Δ t = m P ⋅ v P F ¯ mittlere Kraft während der Stoßzeit Δ t Dauer des Stoßes m P Masse der Pistole v P Geschwindigkeit der Pistole

Aus dieser Gleichung kann man Aussagen über die beim Rückstoß wirkende mittlere Kraft, der Stoßkraft, ableiten. Bei gegebener Masse der Pistole hängt sie von der Geschossgeschwindigkeit und der Dauer der Beschleunigung im Lauf ab.

  • Gesamtimpuls des Systems Pistole - Geschoss vor und nach dem Abschuss: Der Gesamtimpuls ändert sich nicht. Er ist null.

    Shutterstock/Alexander Rochau

Anwendungen

Der Rückstoß wird beispielsweise in folgender Weise genutzt:

  • Quallen stoßen Wasser in einer bestimmten Richtung aus. Sie bewegen sich dadurch in der entgegengesetzten Richtung.
  • Bei Raketen werden Verbrennungsgase mit hoher Geschwindigkeit in der einen Richtung ausgestoßen. Die Rakete bewegt sich dadurch in der entgegengesetzten Richtung. Nähere Erläuterungen dazu sind unter dem Stichwort „Raketenantrieb“ gegeben.
  • Bei Flugzeugen (Düsentriebwerke, Turboproptriebwerke) werden ebenfalls Verbrennungsgase in der einen Richtung ausgestoßen, die eine Bewegung des Flugzeuges in der entgegengesetzten Richtung bewirken.
  • Bei Schiffen erfolgt der Antrieb und die Steuerung teilweise durch Turbinen, die angesaugtes Wasser mit hoher Geschwindigkeit ausstoßen.
  • Beim Rudern wird Wasser durch die Ruderblätter in der einen Richtung bewegt. Das Boot bewegt sich dann in der entgegengesetzten Richtung.

Was heißt „rückstoßfrei“?

Bei Geschützen spricht man manchmal davon, dass sie rückstoßfrei seien. Da ein Rückstoß beim Abfeuern eines Geschosses physikalisch grundsätzlich nicht vermeidbar ist, wendet man einen Trick an: Der Rückstoßimpuls wird durch den Schubimpuls eines Pulvergasstrahls kompensiert, der entgegengesetzt zur Richtung der Geschossbewegung austritt und demzufolge dem Impuls des Geschützes entgegenwirkt.

  • Beim Raketenantrieb wird der Rückstoß genutzt.
Lernhelfer (Duden Learnattack GmbH): "Rückstoß." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/schuelerlexikon/physik-abitur/artikel/rueckstoss (Abgerufen: 20. May 2025, 18:37 UTC)

Suche nach passenden Schlagwörtern

  • Raketenantrieb
  • Rückstoß
  • Rückstoßimpuls
  • Stoßkraft
  • Kraftstoß
  • rückstoßfreies Geschütz
  • Impulserhaltungssatz
  • Schubimpuls
  • Gesamtimpuls
  • abgeschlossenes System
  • Geschossgeschwindigkeit
  • innere Kräfte
  • Wechselwirkungsgesetz
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Relativistischer Impuls

Mit der relativistischen Deutung der Masse ergibt sich für die Relativitätstheorie auch ein relativistischer Impuls, der berechnet werden kann mit der Gleichung:

p → = m   ( v ) ⋅ v → = m 0 1 − v 2 / c 2 ⋅ v → = k ⋅ m 0 ⋅ v →

Mit dem relativistischen Impuls kann auch der Kraftbegriff relativistisch dargestellt werden.

Relativität der Masse

Die Masse ist ein Maß für die Schwere und die Trägheit eines Körpers. In der klassischen Physik wird sie als konstant angesehen. In der speziellen Relativitätstheorie ist es möglich, sie als abhängig von der Geschwindigkeit zu interpretieren, um experimentelle Tatsachen zu erklären. Für diese relativistische Masse mrelm_{\text{rel}} gilt dann:

mrel=m01-v2c2m_\text{rel}=\frac{m_0}{\sqrt{1-\frac{v^2}{c^2}}}Mittlerweile wird diese Interpretation allerdings vermieden. In der aktuellen Forschung wird die Masse auch in Bezug auf die Relativitätstheorie als konstant angenommen.

Raketenantrieb und Raketengrundgleichung

Eine Rakete wird durch den Rückstoß ausströmender Gase vorwärts getrieben. Sie nutzt damit zur Fortbewegung den Impulserhaltungssatz.
Das hierbei genutzte Prinzip wird als Rückstoßprinzip oder als Raketenprinzip bezeichnet.
Die Endgeschwindigkeit, die eine Rakete erreichen kann, wird durch die Raketengrundgleichung bestimmt. Sie wurde erstmals von dem russischen Forscher KONSTANTIN EDUADOWITSCH ZIOLKOWSKI (1857-1935) angegeben.

Schiefer elastischer Stoß

Stößt ein Körper, z.B. eine Billardkugel, unter einem beliebigen Winkel ungleich 0° und ungleich 90° gegen eine Wand, so spricht man von einem schiefen elastischen Stoß. Das Gegenstück wäre ein gerader Stoß. Für einen solchen schiefen Stoß gilt der Impulserhaltungssatz und der Energieerhaltungssatz der Mechanik. Die Reflexion an einer festen Wand ist sehr kompliziert, wenn man Drehungen mit beachtet. Bei Annahme eines Massepunktes erfolgt die Reflexion entsprechend dem Reflexionsgesetz.

Wissenstest, Impuls und Drehimpuls

Impuls und Drehimpuls sind grundlegende physikalische Größen. Während es beim Impuls um translatorische Bewegungen geht, bezieht der Drehimpuls auf die Rotation von Körpern um eine Drehachse. Für beide Größen gilt jeweils ein Erhaltungssatz. Im Test wird das Verständnis von Größen und Zusammenhängen aus diesem Themenfeld geprüft.

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Physik - Impuls und Drehimpuls".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025