Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Physik
  3. 4 Elektrizitätslehre
  4. 4.5 Elektrische Leitungsvorgänge
  5. 4.5.2 Elektrische Leitung in Flüssigkeiten
  6. Leitung in Flüssigkeiten

Leitung in Flüssigkeiten

In Flüssigkeiten erfolgt nur dann ein Leitungsvorgang, wenn durch Dissoziation frei bewegliche (wanderungsfähige) Ionen vorhanden sind. Beim Anlegen einer Spannung und damit beim Vorhandensein eines elektrischen Feldes bewegen sich die Ionen gerichtet. Es wird elektrische Energie in thermische Energie umgewandelt. Mit den Ionen erfolgt auch ein Stofftransport.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Entsprechend dem allgemeinen Leitungsmodell müssen für einen elektrischen Leitungsvorgang zwei Voraussetzungen erfüllt sein:

  1. Vorhandensein frei beweglicher (wanderungsfähiger) Ladungsträger: Bringt man in destilliertes Wasser Salze, Basen oder Säuren, so bilden sich durch Dissoziation positiv und negativ geladene Ionen, die sich in der Flüssigkeit frei bewegen können.
  2. Existenz eines elektrischen Feldes: Das wird durch Anlegen einer elektrischen Spannung erreicht.

Der Verlauf des elektrischen Leitungsvorganges in Flüssigkeiten ist dadurch gekennzeichnet, dass

  • sich positiv und negativ geladene Ionen in der Flüssigkeit gerichtet bewegen, dabei erfolgt mit dem Ladungstransport auch ein Stofftransport,
  • die gerichtete Bewegung der Ionen durch Zusammenstöße mit anderen Ionen und Molekülen behindert wird,
  • beim Leitungsvorgang elektrische Energie in thermische Energie umgewandelt wird. Die thermische Energie wird in Form von Wärme an die Umgebung abgegeben.

Auftreten und Anwendung von Leitungsvorgängen in Flüssigkeiten

Leitungsvorgänge in Flüssigkeiten können überall dort auftreten, wo sich Ionen in einer Flüssigkeit befinden. Das ist z. B. auch bei Mineralwasser oder Leitungswasser der Fall. Deshalb:

Vorsicht im Umgang mit Flüssigkeiten und Elektrizität!

Leitungsvorgänge in Flüssigkeiten werden z. B. bei der Elektrolyse, beim Galvanisieren oder beim Lackieren von Autoteilen genutzt.

Lernhelfer (Duden Learnattack GmbH): "Leitung in Flüssigkeiten." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/schuelerlexikon/physik/artikel/leitung-fluessigkeiten (Abgerufen: 30. June 2025, 07:46 UTC)

Suche nach passenden Schlagwörtern

  • Moleküle
  • Video
  • Galvanisieren
  • Verlauf des elektrischen Leitungsvorganges
  • Lackieren von Autoteilen
  • Leitung in Flüssigkeiten
  • Elektrolyse
  • Ionen
  • Dissoziation
  • allgemeines Leitungsmodell
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Elektrischer Widerstand

Der elektrische Widerstand eines Bauteils gibt an, wie stark der elektrische Strom in ihm behindert wird.

Formelzeichen:
Einheit:
R
ein Ohm (1 Ω )

Definiert ist der elektrische Widerstand als der Quotient aus elektrischer Spannung und elektrischer Stromstärke:

R = U I U Spannung am Bauteil I Stromstärke durch das Bauteil

Diese Gleichung wird auch als ohmsches Gesetz bezeichnet.

Das Bändermodell

Das Bändermodell zur Beschreibung elektrischer Leitungsvorgänge hat seine Grundlagen in einer quantenmechanischen Beschreibung der energetischen Zustände fester Stoffe, in denen eine große Zahl von Atomen periodisch angeordnet sind. Es ist ein Modell für die Energiezustände von Elektronen in einem Festkörper und geeignet, die Leitfähigkeit unterschiedlicher Stoffe anschaulich zu beschreiben.
Die für die elektrische Leitung verantwortlichen freien Ladungen verhalten sich im Kristallgitter wie ein Elektronengas. Zwischen seinen Teilchen existiert eine Wechselwirkung, die klassisch durch die elektrostatischen Kräfte verstanden werden kann. Quantenmechanisch beansprucht jedes Elektron wegen der Gültigkeit der Unschärferelation ein eigenes Impulsintervall bestimmter Größe. Im Beitrag wird eine vereinfachte Darstellung des Bändermodells für Leiter, Halbleiter und Nichtleiter gegeben.

Gleichrichterschaltungen

Gleichrichterschaltungen haben die Aufgabe, aus sinusförmigen Wechselspannungen Gleichspannungen zu erzeugen. Erreichen lässt sich dies mit den unterschiedlichsten Schaltungen, die in zwei Klassen eingeteilt werden können, die der Einweg- und die der Zweiwegschaltungen. Eine exakte Klassifizierung (nach DIN) sowie die Erläuterung der wichtigsten Gleichrichterschaltungen ist Gegenstand dieses Artikels. Darüber hinaus wird an der Einpuls-Einweg-Gleichrichterschaltung exemplarisch eine grafische Methode zur Ermittlung der zeitlichen Verläufe der gleichgerichteten Spannung vorgestellt.

Halbleiterdioden

Halbleitende Werkstoffe wie Ge, Si, GaP (Galliumphosphid), InAs (Indiumarsenid) oder InSb (Indiumantimonid) besitzen eine stark temperaturabhängige Leitfähigkeit, die allerdings nur in sehr reinen großräumigen Kristallen (Einkristalle) von Bedeutung ist.
Diese Leitung wird als Eigenleitung (intrinsic conduction) bezeichnet. Die hierbei auftretende Leitfähigkeit bleibt i.d.R. einige Zehnerpotenzen unter der von Metallen. Der Stromfluss wird durch zwei Ladungsträgerarten, die Elektronen und die Defektelektronen realisiert.
Durch gezieltes technisches Einwirken kann in einem eigenleitenden Kristall das bestehende Gleichgewicht zwischen der Zahl der negativen Elektronen und der Zahl der positiven Defektelektronen zugunsten der einen oder der anderen Ladungsträgerart verschoben werden.

Eine Halbleiterdiode ist ein elektronisches Bauelement, das aus zwei unterschiedlich dotierten Schichten desselben Grundmaterials aufgebaut ist. Sie besteht aus einem n-Halbleiter und einem p-Halbleiter sowie dem Bereich zwischen beiden Schichten, dem pn-Übergang.
Es gibt sie in vielen unterschiedlichen Bauformen. Ein wichtiger Anwendungsbereich ist der der Gleichrichtung. Darüber hinaus werden Dioden aber auch für andere Zwecke eingesetzt, z.B. als Kapazitätsdioden, als Lichtemitterdioden oder als Laserdioden.

Arbeit und Energie im elektrischen Feld

Befinden sich elektrisch geladene Körper oder Teilchen im elektrischen Feld und sind sie frei beweglich, so wirkt auf sie eine Feldkraft, die Arbeit an diesen Körpern bzw. Teilchen verrichtet. Will man umgekehrt geladene Körper oder Teilchen im Feld bewegen, so muss Arbeit verrichtet werden, wenn die Bewegung entgegen der Feldkraft erfolgen soll. Die erforderliche Feldkraft kann bei einfachen Feldformen berechnet werden.
Wird an geladenen Körpern oder Teilchen mechanische Arbeit verrichtet, so ändert sich ihre Energie. Dabei gilt für den Zusammenhang zwischen Arbeit und Energie der allgemeine Zusammenhang W = Δ E .

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025