Direkt zum Inhalt

6 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Erwartungswert

Der Erwartungswert einer Zufallsgröße charakterisiert deren Verteilung durch Angabe eines mittleren Wertes. Dieser muss unter den Werten der Zufallsgröße selbst nicht vorkommen.

Artikel lesen

Galton-Brett

Ein Galton-Brett dient zur Veranschaulichung von Binomialverteilungen. Es ist nach dem englischen Naturforscher Sir FRANCIS GALTON (1822 bis 1911), einem Vetter DARWINs, benannt. GALTON war vor allem Anthropologe und konstruierte zudem die sogenannte Galton-Pfeife.

Artikel lesen

Varianz

Varianz und Standardabweichung kennzeichnen die Streuung der Verteilung einer Zufallsgröße um den Erwartungswert E   ( X ) .
Die Varianz berechnet sich folgendermaßen   V   ( X ) = [ x 1 − E   ( X ) ] 2 ⋅ p 1 + [ x 2 − E   ( X ) ] 2 ⋅ p 2 + ... + [ x k − E   ( X ) ] 2 ⋅ p k
(wobei p 1 ,       p 2     ...     p k die Wahrscheinlichkeiten der auftretenden Werte x 1 ,       x 2     ...     x k der Zufallsgröße X sind).
Unter der Standardabweichung wird die Wurzel aus der Varianz verstanden.

Artikel lesen

Binomialverteilung

Die Verteilung der Anzahl k der Erfolge in einer Bernoulli-Kette der Länge n und der Erfolgswahrscheinlichkeit p wird Binomialverteilung mit den Parametern n und p genannt. Es gilt:

  P ( X = k ) = ( n k ) ⋅ p k ⋅ ( 1 − p ) n − k   ( k = 0 ;     1     ...     n )

Tabellen der Binomialverteilung für bestimmte Parameterwerte von n und p sind in vielen Tafelwerken enthalten.
Binomialverteilungen lassen sich mithilfe des sogenannten Galton-Bretts veranschaulichen.

Artikel lesen

Wahrscheinlichkeitsverteilung

Zufallsgrößen X sind dadurch gekennzeichnet, dass sie verschiedene Werte annehmen können, wobei jeder dieser Werte ein zufälliges Ereignis darstellt und mit einer bestimmten Wahrscheinlichkeit auftritt.
Die Funktion, die jedem Wert von X die Wahrscheinlichkeit für sein Eintreten zuordnet, wird Verteilung der Zufallsgröße bzw. Wahrscheinlichkeitsverteilung genannt.

Artikel lesen

Zufallsgrößen

Eine Zufallsgröße X ist dadurch charakterisiert, dass sie bei unter gleichen Bedingungen durchgeführten Versuchen verschiedene Werte annehmen kann. Man unterscheidet zwischen diskreten und stetigen (kontinuierlichen) Zufallsgrößen.
Während bei einer diskreten Zufallsgröße in einem Intervall nur endlich viele Werte x 1 ,   x 2   ...   x n möglich sind, kann eine stetige Zufallsgröße beliebig (unendlich) viele Werte annehmen.

6 Suchergebnisse

Fächer
  • Mathematik (6)
Klassen
  • 5. Klasse (6)
  • 6. Klasse (6)
  • 7. Klasse (6)
  • 8. Klasse (6)
  • 9. Klasse (6)
  • 10. Klasse (6)
  • Oberstufe/Abitur (14)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025