Direkt zum Inhalt

4 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Daten, Auswerten

Für häufig wiederkehrende Berechnungen enthalten Tabellenkalkulationsprogramme vorbereitete Formeln (sogenannte Funktionen), die an den entsprechenden Stellen nur noch einzufügen und durch spezielle Eingaben zu ergänzen sind.

Artikel lesen

Lagemaße

Zur Charakterisierung von Stichproben, vor allem solchen mit großem Umfang n, werden spezielle Werte (auch Maße genannt) herangezogen. Diese Kenngrößen von Häufigkeitsverteilungen ermöglichen insbesondere den Vergleich statistischer Untersuchungen.
Kenngrößen der Lage beschreiben Häufigkeitsverteilungen durch Angabe „mittlerer Werte“. Dabei ist die Wahl unterschiedlicher Mittelwerte möglich. Am bekanntesten ist das arithmetische Mittel (der Durchschnitt). Als weiteren Mittelwert benutzt man bei statistischen Untersuchungen den Zentralwert.

Artikel lesen

Wissenstest - Kenngrößen und Wahrscheinlichkeit

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Mathematik - Kenngrößen und Wahrscheinlichkeit".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Artikel lesen

Kenngrößen von Zufallsgrößen

Eine Zufallsgröße wird vollständig durch ihre Verteilungsfunktion beschrieben. Diese gibt an, welche Werte die Zufallsgröße annehmen kann und mit welchen Wahrscheinlichkeiten sie dies tut.
In der Praxis möchte man allerdings meist mit möglichst wenigen, aber typischen Angaben auskommen, denn oftmals reicht schon eine grobe Vorstellung von der Zufallsgröße aus. Es kommt hinzu, dass die Verteilungsfunktion mitunter gar nicht oder nur schwer bestimmbar ist.

Man sucht deshalb nach Kenngrößen (manchmal spricht man auch von Parametern), die einen hinreichenden Aufschluss und eine quantitative Charakterisierung einer Zufallsgröße ermöglichen. Dies leisten Kenngrößen wie Erwartungswert, Median und Modalwert sowie die Streuung (bzw. Varianz) der Zufallsgröße.
Zur Charakterisierung der Asymmetrie einer Zufallsgröße benutzt man darüber hinaus die Kenngröße Schiefe. Eine Definition dieser Kenngröße geht auf den Vater der mathematischen Statistik KARL PEARSON (1857 bis 1936) zurück.

4 Suchergebnisse

Fächer
  • Mathematik (4)
Klassen
  • 5. Klasse (3)
  • 6. Klasse (3)
  • 7. Klasse (3)
  • 8. Klasse (3)
  • 9. Klasse (3)
  • 10. Klasse (3)
  • Oberstufe/Abitur (1)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025