Direkt zum Inhalt

5 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Wurzeln, Rechnen

a = c n (gesprochen: a ist gleich n-te Wurzel aus c)
Dabei heißen n der Wurzelexponent, c der Radikand und a der Wurzelwert.
Im Bereich der reellen Zahlen existiert die n-te Wurzel aus c stets, wenn c eine nichtnegative reelle Zahl und n eine natürliche Zahl ( n > 1 ) ist.
Wurzeln aus negativen Zahlen existieren im Bereich der reellen Zahlen nicht.

Artikel lesen

Wurzeln, Wissenswertes und Historisches

Eine Umkehrung des Potenzierens ist das Radizieren (Wurzelziehen).
Es ist die Frage nach dem Wert von a zu beantworten, wenn in der Potenz a b = c die Werte von b und c bekannt sind.
a n = c     ( a ∈ ℝ ;   a ≥ 0   ;   n ∈ ℕ ;   n ≠ 1;   n ≠ 0;   c ≥ 0 ) ist gleichbedeutend mit
a = c n (gesprochen: a ist gleich n-te Wurzel aus c).
Dabei heißen n der Wurzelexponent, c der Radikand und a der Wurzelwert.

Artikel lesen

Allgemeine Wurzelfunktionen

Funktionen mit Gleichungen der Form   y = f ( x ) = x m n   ( x ≥ 0 ;       m ,   n ∈ ℕ ;     m ≥ 1 ;     n ≥ 2 )
heißen Wurzelfunktionen.
Wurzelfunktionen sind spezielle Potenzfunktionen, wenn man als Exponenten nicht nur ganze Zahlen, sondern auch gebrochene Zahlen zulässt:
  x m n = x m n   ( x ≥ 0 ;     m ,   n ∈ ℕ ;     m ≥ 1 ;     n ≥ 2 )
Als Wurzelfunktionen bezeichnet man im weiteren Sinne ebenfalls alle Funktionen, in deren Funktionsterm das Argument x als Bestandteil eines Wurzelradikanden auftritt, z. B. also:
  f ( x ) = x − 2 4 ,     g ( x ) = 5 4 − x 3

Artikel lesen

Spezielle Wurzelfunktion

Besonders häufig treten Funktionen mit Gleichungen der Form y = f ( x ) = x 2 = x auf. Die Funktion f ( x ) = x ist die Umkehrfunktion (inverse Funktion) zu y = g ( x ) = x 2 , jedoch nur für x ≥ 0 , da die Gleichung g ( x ) = x 2 keine umkehrbar eindeutige (eineindeutige) Zuordnung beschreibt.

Artikel lesen

Heron-Verfahren

HERON VON ALEXANDRIA, er lebte etwa Ende des 1. Jh. in Alexandria, entdeckte ein Verfahren zur Berechnung einer Quadratwurzel, indem er dieses Problem geometrisch interpretierte.
Die Berechnung von x = A entspricht der Aufgabe, die Seitenlänge x eines Quadrates bei bekanntem Flächeninhalt A zu ermitteln.
HERON betrachtete eine Folge von Rechtecken, die alle den Flächeninhalt A haben und deren Seitenlängen sich immer mehr annähern, indem er jeweils das arithmetische Mittel der vorhergehenden Seitenlängen berechnete. Dadurch konnte er x durch schrittweise Annäherung beliebig genau bestimmen.

5 Suchergebnisse

Fächer
  • Mathematik (5)
Klassen
  • 5. Klasse (5)
  • 6. Klasse (5)
  • 7. Klasse (5)
  • 8. Klasse (5)
  • 9. Klasse (5)
  • 10. Klasse (5)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025