Direkt zum Inhalt

9 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Exponentialfunktionen

Funktionen mit Gleichungen der Form
  y = f ( x ) = a x   ( a ∈ ℝ ;       a > 0 ;       a ≠ 1 )
heißen Exponentialfunktionen. Ihr Definitionsbereich ist die Menge ℝ der reellen Zahlen.

Artikel lesen

Leonhard Euler

LEONHARD EULER (1707 bis 1783), Schweizer Mathematiker und Physiker
*  15. März 1707 Basel
† 18. September 1783 St. Petersburg

LEONHARD EULER war einer der produktivsten Wissenschaftler, was sowohl Fülle und Bedeutsamkeit als auch Vielseitigkeit seiner Beiträge angeht. Zwar gilt er vor allem als Mathematiker, doch hat er auch andere Gebiete – oft unter Nutzung der Mathematik – bearbeitet.

Artikel lesen

Exponentialgleichungen, Anwendungen

Eine Reihe von inner- und außermathematischen Anwendungsaufgaben führt aus das Lösen von Exponentialgleichungen.
Als Beispiele werden Aufgaben zum atmosphärischen Luftdruck und zum Entalden eines Kondensators bzw. zur Zinseszinsrechnung angegeben.

Artikel lesen

Euler, Mathematische Beiträge

LEONHARD EULER (1707 bis 1783), Schweizer Mathematiker und Physiker
*  15. März 1707 Basel
† 18. September 1783 St. Petersburg

Die Würdigung der mathematischen Beiträge EULERs muss sich hier auf einige ausgewählte Beispiele beschränken.

EULERs besondere Liebe galt der Zahlentheorie.

Artikel lesen

Approximation einer Binomialverteilung

Bei der praktischen Anwendung der Binomialverteilung B n ;   p treten nicht selten große oder sogar sehr große Werte von n (etwa n = 10   000 ) auf, wodurch das Berechnen der Wahrscheinlichkeiten aufgrund der dabei zu ermittelnden Fakultäten und Potenzen sehr zeitaufwendig wird. Schon frühzeitig versuchte man deshalb, Näherungsformeln für die Binomialverteilung zu finden.

Hier ist es (unter bestimmten Voraussetzungen) günstig, die Binomialverteilung durch eine POISSON-Verteilung oder eine Normalverteilung zu approximieren und entsprechende Näherungsformeln anzuwenden.

Artikel lesen

Johann Heinrich Lambert

* 26. August 1728 Mülhausen (Mulhouse)
† 25. September 1777 Berlin

JOHANN HEINRICH LAMBERT war Mitglied der Berliner Akademie der Wissenschaften. Seine Arbeiten auf mathematischem Gebiet beschäftigten sich u.a. mit der Irrationalität der Zahl π , den hyperbolischen Funktionen sowie dem euklidischen Parallelenaxiom.

Artikel lesen

Anwendung transzendenter Funktionen bei der Zinseszinsrechnung

Wird ein festes Kapital K mehrere Jahre verzinst, ohne dass die Zinsen am Jahresende abgehoben werden, so werden auch die jeweils angefallen Zinsen mit verzinst. Man spricht in diesem Fall von der sogenannten Zinseszinsrechnung. Diese stellt eine wichtige Anwendung transzendenter Funktionen dar.

Artikel lesen

Reelle Zahlen

Der Bereich der rationalen Zahlen und der Bereich der irrationalen Zahlen bilden zusammen den Bereich der reellen Zahlen.
Reelle Zahlen lassen sich auf der Zahlengeraden darstellen, dabei gehört zu jeder reellen Zahl genau ein Punkt und zu jedem Punkt genau eine reelle Zahl.
Für das Rechnen mit reellen Zahlen gelten im Prinzip die gleichen Regeln und Gesetze wie im Bereich der rationalen Zahlen. Anstelle mit reellen Zahlen rechnet man häufig mit deren rationalen Nährungswerten.

Artikel lesen

Exponentialfunktionen

Funktionen mit Gleichungen der Form
  y = f ( x ) = a x   ( a ∈ ℝ ;       a > 0   ;   a ≠ 1 )
heißen Exponentialfunktionen.
Ihr Definitionsbereich ist die Menge ℝ der reellen Zahlen.

9 Suchergebnisse

Fächer
  • Mathematik (9)
Klassen
  • 5. Klasse (4)
  • 6. Klasse (4)
  • 7. Klasse (4)
  • 8. Klasse (4)
  • 9. Klasse (4)
  • 10. Klasse (4)
  • Oberstufe/Abitur (5)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025