Direkt zum Inhalt

5 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Der Satz von Bayes

Der nach dem englischen Geistlichen THOMAS BAYES (1702 bis 1761) benannte Satz macht Aussagen zum Berechnen bedingter Wahrscheinlichkeiten.
Der Satz von Bayes soll im Folgenden anhand eines Anwendungsbeispieles hergeleitet werden.

Artikel lesen

Rechenregeln für bedingte Wahrscheinlichkeiten

Um bedingte Wahrscheinlichkeiten zu berechnen, verwendet man als Hilfsmittel außer ihrer Definition auch Baumdiagramme oder Vierfeldertafeln.
Ein Berechnen bedingter Wahrscheinlichkeiten ist auch mithilfe des allgemeinen Produkt- oder Multiplikationssatzes und des Satzes der totalen Wahrscheinlichkeiten möglich. Diese beiden Sätze entsprechen der ersten bzw. zweiten Pfadregel im Baumdiagramm.
Anhand eines Anwendungsbeispieles soll im Folgenden das Rechnen mit bedingten Wahrscheinlichkeiten demonstriert werden.

Artikel lesen

Zufällige Ereignisse

Der mathematische Begriff des (zufälligen) Ereignisses ist für die Wahrscheinlichkeitstheorie von grundlegender Bedeutung.
Ausgehend von der Erfahrung, dass beim Ablauf zufälliger Vorgänge deren Ergebnis im Rahmen verschiedener Möglichkeiten ungewiss ist, ordnet man in der Wahrscheinlichkeitstheorie jedem Zufallsexperiment eine Ergebnismenge Ω zu.

  • Jede Teilmenge A der Ergebnismenge Ω eines Zufallsexperiments heißt (zufälliges) Ereignis A.

Spezielle Ereignisse sind das unmögliche und das sichere Ereignis, atomare Ereignisse, Gegenereignisse, unvereinbare sowie unabhängige Ereignisse.

Artikel lesen

Unabhängigkeit von (mehr als zwei) Ereignissen

Zwei Ereignisse A und B mit positiver Wahrscheinlichkeit sind genau dann voneinander stochastisch unabhängig, wenn gilt:
  P ( A ∩ B ) = P ( A ) ⋅ P ( B )
Man kann diesen Ansatz auf endlich oder abzählbar viele Ereignisse ausdehnen, wobei der Einfachheit halber vorausgesetzt wird, dass alle betrachteten Ereignisse eine positive Wahrscheinlichkeit besitzen. Dabei ist aber Vorsicht geboten. Es ist zum Beispiel möglich, dass die Ereignisse A 1 ,       A 2 ,       ...,       A n paarweise voneinander unabhängig sind (d.h., je zwei der Ereignisse sind voneinander unabhängig), die Ereignisse A 1 ,       A 2 ,       ...,       A n in ihrer Gesamtheit sind dies aber nicht.

Artikel lesen

Totale Wahrscheinlichkeit

Mitunter wird man mit dem Problem konfrontiert, die Wahrscheinlichkeit für ein Ereignis A zu berechnen, das im Zusammenhang mit n verschiedenen Ereignissen B i auftritt (in der Praxis können die B i zum Beispiel verschiedene Fälle oder Ursachen von A sein), wobei sich die Wahrscheinlichkeiten für die Ereignisse B i und insbesondere für das Eintreten von A unter der Bedingung, dass jeweils ein B i eingetreten ist, mitunter leichter angeben bzw. ermitteln lassen.

Gesucht ist also eine Aussage über eine „unbedingte“ Wahrscheinlichkeit, wenn Informationen über bedingte Wahrscheinlichkeiten vorliegen bzw. primär bestimmbar sind. Bei einer solchen Problemsituation wird man versuchen, den im Folgenden angeführten Satz der totalen Wahrscheinlichkeit anzuwenden.

5 Suchergebnisse

Fächer
  • Mathematik (5)
Klassen
  • Oberstufe/Abitur (5)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025