Direkt zum Inhalt

11 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Vektorielle Größen

In der Physik unterscheidet man Größen, die von ihrer Richtung abhängig sind, von richtungsunabhängigen Größen. Solche Größen, bei denen die messbare Eigenschaft sowohl durch einen Betrag als auch durch eine Richtung gekennzeichnet ist, nennt man gerichtete oder vektorielle Größen. Beispiele für solche vektoriellen Größen sind Kraft, Geschwindigkeit oder Beschleunigung.
Im Unterschied dazu gibt es auch ungerichtete Größen wie z. B. den Druck oder die Masse.

Artikel lesen

Überlagerung gleichförmiger Bewegungen

Setzt sich die Bewegung eines Körpers aus zwei gleichförmigen Teilbewegungen zusammen, so spricht man von einer Überlagerung oder Superposition gleichförmiger Bewegungen. Die Teilbewegungen können die gleiche Richtung oder die entgegengesetzte Richtung haben oder einen beliebigen Winkel zueinander bilden.
Die beiden Teilbewegungen ergeben eine resultierende Bewegung (zusammengesetzte Bewegung). Für diese resultierende Bewegung können Wege und Geschwindigkeiten rechnerisch oder zeichnerisch ermittelt werden. Dabei ist der vektorielle Charakter von Weg und Geschwindigkeit zu beachten.

Artikel lesen

Überlagerung gleichförmiger und gleichmäßig beschleunigter Bewegungen

Setzt sich die Bewegung eines Körpers aus einer gleichförmigen und einer gleichmäßig beschleunigten Bewegung zusammen, so spricht man von einer Überlagerung oder Superposition von Bewegungen. Die Teilbewegungen können die gleiche Richtung oder die entgegengesetzte Richtung haben oder einen beliebigen Winkel zueinander bilden.
Die beiden Teilbewegungen ergeben eine resultierende (zusammengesetzte) Bewegung. Für diese resultierende Bewegung können Wege und Geschwindigkeiten rechnerisch oder zeichnerisch ermittelt werden. Dabei ist der vektorielle Charakter von Weg und Geschwindigkeit zu beachten.

Artikel lesen

Feldstärke und dielektrische Verschiebung

Elektrische Felder können mithilfe von Feldlinienbildern beschrieben werden. Zur ihrer quantitativen Beschreibung nutzt man die feldbeschreibenden Größen elektrische Feldstärke und dielektrische Verschiebung. Die elektrische Feldstärke E ist definiert als Quotient aus der Kraft F, die das Feld auf einen positiv geladenen Probekörper ausübt, und dessen Ladung Q:
E → = F → Q
Die dielektrische Verschiebung D (Verschiebungsdichte) ist ein Maß für die auf einer Fläche im elektrischen Feld durch Influenz hervorgerufenen Ladung:
D = Q A
Beide Größen sind durch die elektrische Feldkonstante und die Permittivitätszahl miteinander verbunden:
D → = ε 0 ⋅ ε r ⋅ E →
Bevorzugt wird mit der elektrischen Feldstärke gearbeitet.

Artikel lesen

Geladene Teilchen in elektrischen Feldern

Auf ein geladenes Teilchen wirkt im elektrischen Feld eine Kraft, die zur Beschleunigung des Ladungsträgers führt. Die Bahnkurve des Teilchens ist abhängig von der Richtung der Anfangsgeschwindigkeit. Bei einer Bewegung in Richtung oder entgegen der Richtung der Feldlinien erfolgt eine gleichmäßig beschleunigte Bewegung. Das wird z.B. genutzt, um schnelle Elektronen (einen Elektronenstrahl) zu erzeugen. Verläuft die Bewegung senkrecht zu den Feldlinien eines homogenen Feldes, dann bewegen sich die Ladungsträger auf einer parabelförmigen Bahn. Diese Ablenkung von der ursprünglichen geradlinigen Bewegung wird in Elektronenstrahlröhren zur Erzeugung von Bildern (z. B. bei Oszillografen) genutzt.

Artikel lesen

Physikalische Größen

Physikalische Größen sind spezielle Fachbegriffe. Sie unterscheiden sich von anderen Fachbegriffen dadurch, dass sie messbare Eigenschaften von Objekten beschreiben. Neben der physikalischen Bedeutung kann auch der Wert der Größe in Form eines Zahlenwertes und einer Maßeinheit angegeben werden. Darüber hinaus gibt es für jede Größe ein Formelzeichen.
Bei den physikalischen Größen kann man unterscheiden zwischen vektoriellen und skalaren Größen sowie zwischen Zustands- und Prozessgrößen. Einen speziellen Charakter haben Erhaltungsgrößen und Wechselwirkungsgrößen. Gesondert abgehoben werden manchmal auch Stoffkonstanten und Naturkonstanten.

Artikel lesen

Schräger Wurf

Unter einem schrägen oder schiefen Wurf versteht man die Überlagerung (Superposition) einer gleichförmigen Bewegung mit bestimmter Anfangsgeschwindigkeit (Abwurfgeschwindigkeit) schräg nach oben und des freien Falls.
Die beiden Teilbewegungen ergeben eine resultierende (zusammengesetzte) Bewegung. Für diese resultierende Bewegung können Wege und Geschwindigkeiten rechnerisch oder zeichnerisch ermittelt werden. Dabei ist der vektorielle Charakter von Weg und Geschwindigkeit zu beachten.
Als Bahnkurve ergibt sich eine typische Wurfparabel.

Artikel lesen

Senkrechter Wurf

Unter einem senkrechten Wurf versteht man die Überlagerung (Superposition) einer gleichförmigen Bewegung mit der Anfangsgeschwindigkeit (Abwurfgeschwindigkeit) v 0 und des freien Falls.
Erfolgen beide Teilbewegungen in der gleichen Richtung, so spricht man vom senkrechten Wurf nach unten. Erfolgen beide Teilbewegungen in entgegengesetzter Richtung, so spricht man von einem Wurf nach oben.
Die beiden Teilbewegungen ergeben eine resultierende (zusammengesetzte) Bewegung. Für diese resultierende Bewegung können Wege und Geschwindigkeiten rechnerisch oder zeichnerisch ermittelt werden. Dabei ist der vektorielle Charakter von Weg und Geschwindigkeit zu beachten.

Artikel lesen

Überlagerung gleichförmiger Bewegungen

Setzt sich die Bewegung eines Körpers aus zwei gleichförmigen Teilbewegungen zusammen, so spricht man von einer Überlagerung oder Superposition gleichförmiger Bewegungen. Die Teilbewegungen können die gleiche Richtung oder die entgegengesetzte Richtung haben oder einen beliebigen Winkel zueinander bilden.
Die beiden Teilbewegungen ergeben eine resultierende Bewegung (zusammengesetzte Bewegung). Für diese resultierende Bewegung können Wege und Geschwindigkeiten rechnerisch oder zeichnerisch ermittelt werden. Dabei ist der vektorielle Charakter von Weg und Geschwindigkeit zu beachten.

Artikel lesen

Überlagerung gleichförmiger und gleichmäßig beschleunigter Bewegungen

Setzt sich die Bewegung eines Körpers aus einer gleichförmigen und einer gleichmäßig beschleunigten Bewegung zusammen, so spricht man von einer Überlagerung oder Superposition von Bewegungen. Die Teilbewegungen können die gleiche Richtung oder die entgegengesetzte Richtung haben oder einen beliebigen Winkel zueinander bilden.
Die beiden Teilbewegungen ergeben eine resultierende (zusammengesetzte) Bewegung. Für diese resultierende Bewegung können Wege und Geschwindigkeiten rechnerisch oder zeichnerisch ermittelt werden. Dabei ist der vektorielle Charakter von Weg und Geschwindigkeit zu beachten.

Artikel lesen

Waagerechter Wurf

Unter einem waagerechten Wurf versteht man die Überlagerung (Superposition) einer gleichförmigen Bewegung mit der Anfangsgeschwindigkeit (Abwurfgeschwindigkeit) in horizontaler Richtung und des freien Falls senkrecht dazu.
Die beiden Teilbewegungen ergeben eine resultierende (zusammengesetzte) Bewegung. Für diese resultierende Bewegung können Wege und Geschwindigkeiten rechnerisch oder zeichnerisch ermittelt werden.
Dabei ist der vektorielle Charakter von Weg und Geschwindigkeit zu beachten.
Als Bahnkurve ergibt sich eine typische Wurfparabel (Bild 1).

11 Suchergebnisse

Fächer
  • Physik (11)
Klassen
  • 5. Klasse (3)
  • 6. Klasse (3)
  • 7. Klasse (3)
  • 8. Klasse (3)
  • 9. Klasse (3)
  • 10. Klasse (3)
  • Oberstufe/Abitur (8)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025