Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Physik Abitur
  3. 4 Elektrizitätslehre und Magnetismus
  4. 4.1 Das elektrische Feld
  5. 4.1.2 Elektrische Felder
  6. Feldstärke und dielektrische Verschiebung

Feldstärke und dielektrische Verschiebung

Elektrische Felder können mithilfe von Feldlinienbildern beschrieben werden. Zur ihrer quantitativen Beschreibung nutzt man die feldbeschreibenden Größen elektrische Feldstärke und dielektrische Verschiebung. Die elektrische Feldstärke E ist definiert als Quotient aus der Kraft F, die das Feld auf einen positiv geladenen Probekörper ausübt, und dessen Ladung Q:
E → = F → Q
Die dielektrische Verschiebung D (Verschiebungsdichte) ist ein Maß für die auf einer Fläche im elektrischen Feld durch Influenz hervorgerufenen Ladung:
D = Q A
Beide Größen sind durch die elektrische Feldkonstante und die Permittivitätszahl miteinander verbunden:
D → = ε 0 ⋅ ε r ⋅ E →
Bevorzugt wird mit der elektrischen Feldstärke gearbeitet.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Elektrische Felder können in unterschiedlicher Weise beschrieben werden. Eine Möglichkeit ist ihre Beschreibung mithilfe von Feldlinienbildern. Genauere Hinweise dazu sind unter diesem Stichwort zu finden. Zur quantitativen Kennzeichnung eines elektrischen Feldes reicht aber ein Feldlinienbild nicht aus. Es sind physikalische Größen erforderlich.

Die elektrische Feldstärke

Zur genaueren Kennzeichnung eines elektrischen Feldes kann man den Betrag und die Richtung der Kraft auf einen Probekörper bestimmen, der sich in diesem Feld befindet. Die Kraft, die auf einen Körper bestimmter Ladung in einem Punkt des Feldes wirkt, ist ein Maß für die Stärke und die Richtung des Feldes in diesem Punkt. Die Größe wird als elektrische Feldstärke bezeichnet und ist folgendermaßen definiert:
Die elektrische Feldstärke E in einem Punkt gibt an, wie groß die Kraft auf eine positive Probeladung in diesem Punkt ist. Sie kann mit folgender Gleichung berechnet werden:
E → = F → Q F Kraft auf einen positiv geladenen Körper Q Ladung dieses Körpers
Die Kraft F wird auch als Feldkraft bezeichnet. Die elektrische Feldstärke ist eine vektorielle Größe , deren Richtung mit der Kraftrichtung auf einen positiv geladenen Körper im Feld übereinstimmt (Bild 1). Trägt der Körper eine negative Ladung, so sind Kraftrichtung und Feldrichtung entgegengesetzt. Als Einheit der Feldstärke ergibt sich 1 N/C. Es gilt:
1   N C = 1   kg ⋅ m s 2 A ⋅ s   Die Einheit 1   kg ⋅ m s 2 im Zähler kann man mit m m erweitern und erhält 1   kg ⋅ m 2 s 2 ⋅ m . Nun ist 1   kg ⋅ m 2 s 2 = 1   N ⋅ m = 1   W ⋅ s = 1   V ⋅ A ⋅ s . Damit erhält man: 1   N C = 1   V ⋅ A ⋅ s A ⋅ s ⋅ m = 1   V m

Die dielektrische Verschiebung

Bringt man, wie in Bild 2 dargestellt, zwei ungeladene metallische Blättchen, die eng aneinanderliegen und folglich leitend miteinander verbunden sind, in ein elektrisches Feld, so erfolgt bei den Blättchen Influenz (Ladungstrennung). Diese ist umso stärker, je stärker das elektrische Feld ist. Quantitativ kann man das erfassen, wenn man die Blättchen im Feld voneinander trennt und anschließend ihre Ladung bestimmt. Man erhält dann die Flächenladungsdichte :
σ = Q A
Damit hat man eine skalare Größe zur Charakterisierung des Feldes. Zur Bestimmung der Richtung des Feldes kann die Flächennormale, also ein zur Fläche senkrecht stehender Vektor, genutzt werden. Das ist sinnvoll, weil elektrische Feldlinien senkrecht aus Leiterflächen austreten und damit stets die Richtung der Feldlinien mit der Richtung der Flächennormalen übereinstimmt. Die betreffende vektorielle Größe wird als dielektrische Verschiebung D → oder auch als Verschiebungsdichte bezeichnet. Somit gilt:
Die dielektrische Verschiebung ist ein Maß für die auf einer Fläche im elektrischen Feld hervorgerufenen Ladung und damit zugleich auch ein Maß für die Stärke des elektrischen Feldes im betreffenden Bereich. Ihr Betrag ergibt sich als Quotient aus influenzierter Ladung Q und Fläche A, ihre Richtung ist gleich der Richtung der Flächennormalen.

Zusammenhang zwischen elektrischer Feldstärke und dielektrischer Verschiebung

Da sowohl durch die elektrische Feldstärke als auch durch die dielektrische Verschiebung ein und dasselbe elektrische Feld beschrieben werden kann, muss es zwischen beiden Größen einen Zusammenhang geben. Sie sind durch die elektrische Feldkonstante und die Permittivitätszahl (auch Dielektrizitätszahl und Dielektrizitätskonstante genannt) miteinander verknüpft. Es gilt:


D → = ε 0 ⋅ ε r ⋅ E → ε 0 elektrische Feldkonstante ε r Permittivitätszahl (für Vakuum und Luft ist ε r = 1, damit vereinfacht sich die Gleichung zu D → = ε 0 ⋅ E → )
Elektrische Feldstärke und dielektrische Verschiebung haben die gleiche Richtung, aber unterschiedliche Beträge und natürlich auch unterschiedliche Einheiten. Heute wird meist nur noch mit einer der beiden Feldgrößen gearbeitet und dabei die elektrische Feldstärke bevorzugt.

Elektrische Feldstärke in speziellen elektrischen Feldern

Ein homogenes Feld ist dadurch gekennzeichnet, dass die Feldlinien parallel verlaufen (Bild 3) und die elektrische Feldstärke an allen Stellen des Feldes gleich groß ist. Den Betrag der Feldstärke kann man durch folgende Überlegung ermitteln (Bild 3):
Für die Verschiebung einer Ladung Q im elektrischen Feld ist eine Arbeit erforderlich:
W = F ⋅ d (1) Sie ist gleich der elektrischen Arbeit W = U ⋅ I ⋅ t und mit I ⋅ t = Q W = U ⋅ Q (2) Ein Gleichsetzen der rechten Seiten von (1) und (2) ergibt: F ⋅ d = U ⋅ Q und nach Umformung: F Q = U d Der rechts stehende Quotient ist die elektrische Feldstärke E , sodass man auch schreiben kann: E = U d
Damit verfügt man über eine einfache Gleichung zur Berechung der Feldstärke im homogenen elektrischen Feld. Sie ist z.B. im Inneren eines Plattenkondensators nur von der Spannung zwischen den Platten und dem Plattenabstand abhängig.

Relativ einfach berechnen lässt sich auch die elektrische Feldstärke in einem Radialfeld einer Punktladung (Bild 4), also für ein inhomogenes Feld. Für die Feldstärke in einem solchen Feld gilt:
E = 1 4 π ⋅ ε 0 ⋅ ε r ⋅ Q r 2 ε 0 elektrische Feldkonstante ε r Permittivitätszahl (Dielektrizitätszahl) Q felderzeugende Ladung r Abstand von der felderzeugenden Ladung
Die Feldstärke hängt somit von der Größe der felderzeugenden Ladung und davon ab, wie groß der Abstand von ihr ist, wobei sich der Betrag der Feldstärke mit dem Quadrat des Abstandes verringert.

Überlagerung elektrischer Felder

Wirken auf einen geladenen Körper mehrere elektrische Felder ein, dann gilt für die auf den Körper wirkende Kraft das Superpositionsprinzip:
Beim Wirken mehrere Felder auf einen geladenen Körper ergibt sich die resultierende Kraft auf ihn als Vektorsumme der einzelnen Feldkräfte.

Lernhelfer (Duden Learnattack GmbH): "Feldstärke und dielektrische Verschiebung." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/schuelerlexikon/physik-abitur/artikel/feldstaerke-und-dielektrische-verschiebung (Abgerufen: 29. June 2025, 08:31 UTC)

Suche nach passenden Schlagwörtern

  • Radialfeld
  • Superpositionsprinzip
  • Berechnung
  • inhomogenes Feld
  • Verschiebungsdichte
  • Influenz
  • homogenes Feld
  • Dielektrizitätskonstante
  • Flächenladungsdichte
  • Flächennormale
  • Dielektrizitätszahl
  • Überlagerung von elektrischen Feldern
  • Feldstärke im homogenen elektrischen Feld
  • dielektrische Verschiebung
  • Probekörper
  • elektrische Feldstärke
  • Rechenbeispiel
  • Feldkraft
  • Feldstärke im inhomogenen elektrischen Feld
  • Ladungstrennung
  • Permittivitätszahl
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Kondensatoren

Ein Kondensator ist ist elektrisches Bauelement, mit dem elektrische Ladung und damit elektrische Energie gespeichert wird. Die einfachste Form eines Kondensators ist ein Plattenkondensator, der aus zwei sich gegenüberstehenden, voneinander isolierten Metallplatten besteht, zwischen denen sich Luft befindet. Wird zwischen diesen Metallplatten eine elektrische Spannung angelegt, dann sammeln sich auf ihren Oberflächen getrennt voneinander positive und negative Ladungen an. Zwischen den Platten baut sich ein elektrisches Feld auf, in dem Feldenergie gespeichert ist. Die Kapazität eines Kondensators hängt von seinem Aufbau ab und kann in weiten Grenzen variieren. Kondensatoren können in Reihe oder parallel geschaltet werden. Sie verhalten sich im Gleichstromkreis anders als im Wechselstromkreis.

Physikalische Felder im Vergleich

Elektrische Felder, magnetische Felder und Gravitationsfelder sind dadurch gekennzeichnet, dass auf Körper mit bestimmten Eigenschaften, die sich in ihnen befinden, Kräfte ausgeübt werden. Alle drei Arten von Feldern lassen sich mithilfe des Modells Feldlinienbild beschreiben. Für jedes der Felder gibt es feldbeschreibende Größen, die teilweise in analoger Weise definiert sind. Darüber hinaus gibt es zwischen diesen drei Arten von Feldern weitere Gemeinsamkeiten, aber auch deutliche Unterschiede.

Teilchenbeschleuniger

Zur Untersuchung von Elementarteilchen und ihren Wechselwirkungen untereinander sowie mit Stoffen nutzt man Teilchenbeschleuniger unterschiedlicher Bauart. Ziel ist es, Erkenntnisse über die Struktur der Materie im subatomaren Bereich zu gewinnen. Wichtige Arten von Beschleunigern sind Linearbeschleuniger, Zyklotrone, Synchronzyklotrone und Synchrotrone.
Dabei werden geladene Teilchen (Elektronen, Protonen, Ionen) durch elektrische Felder stark beschleunigt und als „Geschosse“ genutzt. Zusätzlich kann man sie durch magnetische Felder auf kreis- bzw. spiralförmigen Bahnen halten. Die Wechselwirkungen mit anderen Teilchen oder Stoffen werden registriert und ausgewertet. Untersuchungen mit Teilchenbeschleunigern haben in den letzten Jahrzehnten zu einer erheblichen Vertiefung der Erkenntnisse über die Struktur der Materie geführt.

Elektrisches Feld

Das elektrische Feld ist ein bestimmter Zustand des Raumes um einen geladenen Körper. Ein solches elektrisches Feld ist mit unseren Sinnesorganen nicht wahrnehmbar. Es ist aber an seinen Wirkungen erkennbar. Ein elektrisches Feld ist dadurch gekennzeichnet, dass auf andere elektrisch geladene Körper, die sich in ihm befinden, Kräfte ausgeübt werden.
Elektrische Felder können mit dem Modell Feldlinienbild veranschaulicht werden, das auf MICHAEL FARADAY (1791-1867) zurückgeht. Dabei kann man zwischen homogenen und inhomogenen Feldern unterscheiden.
Elektrische Felder können auch mit den Feldgrößen elektrische Feldstärke und dielektrische Verschiebung beschrieben werden.

Wissenstest, Elektrische Felder

Elektrische Felder existieren um die Erde, aber auch um jeden anderen elektrische geladenen Körper. Ihre Beschreibung erfolgt mit dem Modell Feldlinienbild und mit der elektrischen Feldstärke. Technisch bedeutsam ist die Ablenkung von geladenen Teilchen in elektrischen Feldern.

Der Test dient der Prüfung von elementaren Kenntnissen zur elektrischen Ladung und zu elektrischen Feldern.

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Physik - Elektrische Felder".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025