Direkt zum Inhalt

17 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Eulersche Gerade

In jedem Dreieck liegen der Schnittpunkt der Mittelsenkrechten M (Umkreismittelpunkt), der Höhenschnittpunkt H und der Schnittpunkt der Seitenhalbierenden S (Schwerpunkt des Dreiecks) auf einer Geraden. Diese Gerade wird nach dem Schweizer Mathematiker LEONARD EULER (1707 bis 1783) eulersche Gerade genannt.

Artikel lesen

Simulation, Zufallsexperimente

Tabellenkalkulationen und Computeralgebrasysteme (CAS) eignen sich auch als Hilfsmittel zur Simulation realer Vorgänge. Mithilfe eines integrierten Zufallszahlengenarators ist es möglich, verschiedene Zufallsexperimente zu simulieren und mathematisch auszuwerten.

Artikel lesen

Urnenmodell

Viele Probleme der klassischen Wahrscheinlichkeitsrechnung lassen sich mithilfe des Urnenmodells veranschaulichen (simulieren). Dazu wird angenommen, dass sich in einem Gefäß (der Urne) eine bestimmte Anzahl (unterscheidbarer) Kugeln befinden und dass aus diesem Gefäß eine entsprechende Anzahl von Kugeln nacheinander bzw. auf einen Griff gezogen werden.

Artikel lesen

Kollineare Punkte

Die Kollinearität beschreibt die Lagebeziehungen mehrerer Punkte.
Zwei Punkte sind stets kollinear, da sie eindeutig eine Gerade festlegen – die Verbindungsgerade. Drei und mehr Punkte heißen kollinear genau dann, wenn sie auf ein und derselben Geraden liegen.
Somit sind alle Punkte, die in einer Geraden enthalten sind, kollinear.
Die Verbindungsstrecken dreier nicht kollinearer Punkte bilden ein Dreieck.

Artikel lesen

Sätze über Dreiecke

Zwischen den Winkeln und Seiten in einem Dreieck gelten zahlreiche Zusammenhänge.
So besteht zwischen den Winkeln eines Dreiecks folgende Beziehung:
Die Summe der Innenwinkel eines Dreiecks beträgt 180° (Innenwinkelsummensatz).

Für die Seiten eines Dreiecks gilt folgende Beziehung:
Die Summe der Längen zweier Seiten ist stets größer als die Länge der dritten Seite (Dreiecksungleichung).

Zwischen den Seiten und Winkeln in einem Dreieck gilt folgende Beziehung:
Der längeren von zwei Seiten liegt stets der größere der entsprechenden Innenwinkel gegenüber.

Artikel lesen

Mittelsenkrechten im Dreieck

Die Mittelsenkrechten eines Dreiecks sind die Mittelsenkrechten der Dreiecksseiten. Die drei Mittelsenkrechten schneiden einander in genau einem Punkt. Dieser Punkt ist der Mittelpunkt eines Kreises, auf dem alle Eckpunkte des Dreiecks liegen. Man nennt diesen Kreis den Umkreis des Dreiecks.

Artikel lesen

Goldener Schnitt

Ein besonderes Teilungsverhältnis einer Strecke heißt Goldener Schnitt bzw. stetige Teilung bei folgender Eigenschaft:
Trägt man den kürzeren auf den längeren Abschnitt ab, so wird dieser im gleichen Verhältnis geteilt wie die Ausgangsstrecke. Dies kann man nun beliebig fortsetzen, wobei das Teilungsverhältnis konstant, eben stetig, erhalten bleibt.

Artikel lesen

Tangentenvieleck

Ein Vieleck, das einen Inkreis besitzen, heißt Tangentenvieleck.
Ein solches Vieleck nennt man auch umbeschriebenes Vieleck. Alle Dreiecke und alle regelmäßigen Vielecke besitzen einen Inkreis und sind Tangentenvielecke.

Artikel lesen

Satz des Thales

Satz des Thales:
Jeder Umfangswinkel über einem Halbkreis (bzw. über dem Durchmesser eines Kreises) ist ein rechter Winkel.

Artikel lesen

Regelmäßige Vielecke

Alle regelmäßigen Vielecke (n-Ecke) besitzen gleich lange Seiten und gleich große Innenwinkel und sind damit konvex.
Die Winkelsumme im n-Eck beträgt (n – 2) · 180°.
Im regelmäßigen n-Eck ist diese Winkelsumme gleichmäßig auf alle n Innenwinkel des n-Ecks verteilt.

Artikel lesen

Zentrische Streckung

Die zentrische Streckung ist eine Abbildung. Durch eine zentrische Streckung mit dem Streckungszentrum Z und dem Streckungsfaktor (Ähnlichkeitsfaktor) k wird eine Figur F in eine ähnliche überführt. Das Streckungszentrum Z ist dabei Fixpunkt, und jede Gerade durch Z ist eine Fixgerade der Abbildung.

Artikel lesen

Winkelhalbierende im Dreieck

Die Winkelhalbierenden halbieren die drei Innenwinkel des Dreiecks. Die drei Winkelhalbierenden schneiden einander in genau einem Punkt. Dieser Punkt ist Mittelpunkt des Kreises, der die drei Dreiecksseiten von innen berührt. Man nennt deshalb diesen Kreis den Inkreis des Dreiecks.

Artikel lesen

Winkelfunktionen, Graphen und Eigenschaften

Graphen von Winkelfunktionen kann man auf die bekannte Weise unter Verwendung einer Wertetabelle zeichnen.
Es ist allerdings auch möglich, ausgehend von der Definition dieser Funktionen am Einheitskreis die zu einem Winkel als Abszisse eines Graphenpunktes gehörende Ordinate sofort aus der Zeichnung zu entnehmen. Gestützt auf diesen Weg der Konstruktion der Funktionsgraphen lassen sich einige wichtige Eigenschaften der Winkelfunktionen ermitteln.

Artikel lesen

Stanislaw Ulam

STANISLAW ULAM (1909 bis 1984), US-amerikanischer Mathematiker polnischer Abstammung
* 03. April 1909 Lemberg (heute: Lwow, Ukraine)
† 13. Mai 1984 Santa Fe (New, Mexico, USA)

STANISLAW ULAM trug maßgeblich zur Entwicklung der ersten Wasserstoffbombe durch die USA bei. Lange Jahre arbeitete er eng mit JOHN VON NEUMANN zusammen.
ULAM gilt als Begründer der sogenannten Monte-Carlo-Methode, einer Methode zum Simulieren von Zufallsexperimenten mithilfe von Zufallszahlen.

Artikel lesen

Pseudozufallszahlen

Die Simulation zufälliger Vorgänge aus der Praxis ist oft sehr mühsam und zeitaufwendig. Das gilt besonders auch für das Erzeugen von Zufallszahlen und das Arbeiten mit diesen Zahlen (ggf. unter Verwendung entsprechender Tabellen).
Heute ist es möglich, von Computern erzeugte Zufallszahlen, sogenannte Pseudozufallszahlen, zu nutzen. Grundlage für deren Erzeugung ist ein Algorithmus, der Ziffernfolgen liefert, die annähernd dieselben Eigenschaften haben wie echte Zufallszahlen.

Artikel lesen

Geometrische Konstruktionen in der Physik

Beim Lösen bestimmter physikalischer Aufgaben (Zusammensetzung oder Zerlegung von Kräften, Zusammensetzung von Geschwindigkeiten, Zusammensetzung von Wegen) werden die Sachverhalte in einer maßstäblichen Zeichnung dargestellt und das Ergebnis durch geometrische Konstruktion ermittelt. Aus der geometrischen Konstruktion können dann weitere Folgerungen gezogen werden.

Artikel lesen

Vektorielle Größen

In der Mathematik unterscheidet man skalare und vektorielle Größen. Skalare Größen (Skalare) sind richtungsunabhängig. Zu diesen Größen gehören z. B. Masse, Zeit und Währung.
Größen, bei denen die messbare Eigenschaft sowohl durch einen Betrag als auch durch eine Richtung gekennzeichnet ist, nennt man gerichtete oder vektorielle Größen. Beispiele für solche vektoriellen Größen sind Kraft, Geschwindigkeit oder Beschleunigung.

17 Suchergebnisse

Fächer
  • Mathematik (17)
Klassen
  • 5. Klasse (17)
  • 6. Klasse (17)
  • 7. Klasse (17)
  • 8. Klasse (17)
  • 9. Klasse (17)
  • 10. Klasse (17)
  • Oberstufe/Abitur (7)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025