Direkt zum Inhalt

140 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Das newtonsches Grundgesetz (2. newtonsches Gesetz)

ISAAC NEWTON (1643-1727) entdeckte einen grundlegenden Zusammenhang zwischen Kraft, Masse und Beschleunigung, der als 2. newtonsches Gesetz, Grundgesetz der Mechanik oder newtonsches Grundgesetz bezeichnet wird und lautet:

F → = m ⋅ a → F auf einen Körper wirkende (resultierende) Kraft m Masse des Körpers a Beschleunigung des Körpers

Etwas allgemeiner kann man auch formulieren:

F → = Δ p → Δ t   oder in differenzieller Schreibweise F → = d p → d t   Dabei bedeuten: Δ p → , d p → Impulsänderung des Körpers Δ t , d t Zeitintervall

Artikel lesen

Potenzielle Energie und Potenzial

Potenzielle Energie und Potenzial sind wichtige Größen zur Charakterisierung eines Gravitationsfeldes.
Die potenzielle Energie eines Körpers ist von der Stärke des Gravitationsfeldes, von seiner Masse und davon abhängig, auf welches Bezugsniveau man die potenzieller Energie bezieht. In der Physik ist es üblich, die potenzielle Energie im Unendlichen null zu setzen.
Das Potenzial charakterisiert das Feld und ist damit eine Feldgröße. Unter dem Potenzial eines Punktes im Gravitationsfeld versteht man einen Zustand des Feldes, der ein Maß für die potenzielle Energie eines Körpers im betreffenden Punkt ist, wobei als Bezugspunkt (Nullniveau) ein Punkt im Unendlichen gewählt wird.

Artikel lesen

Reibung und Reibungskräfte

Wenn Körper aufeinanderhaften, gleiten oder rollen, tritt Reibung auf. Dabei wirken zwischen den Körpern Kräfte, die als Reibungskräfte bezeichnet werden. Reibungskräfte sind immer so gerichtet, dass sie der Bewegung entgegenwirken und diese hemmen oder verhindern.
Die wesentliche Ursache für das Auftreten von Reibungskräften liegt in der Oberflächenbeschaffenheit der Körper begründet.
Je nach der Art der Bewegung der Körper aufeinander unterscheidet man zwischen Haftreibung, Gleitreibung und Rollreibung. Die betreffenden Kräfte werden als Haftreibungskraft, Gleitreibungskraft und Rollreibungskraft bezeichnet.

Artikel lesen

Rotationsenergie

Jeder bewegte Körper besitzt kinetische Energie (Bewegungsenergie). Das gilt auch für rotierende starre Körper, z.B. Schwungräder, die Rotoren von Generatoren und Motoren oder einen Kreisel.
Die in einem Körper gespeicherte Rotationsenergie hängt vom Trägheitsmoment dieses Körpers und von seiner Winkelgeschwindigkeit ab. Es gilt:

E r o t = 1 2 J ⋅ ω 2 J Trägheitsmoment ω Winkelgeschwindigkeit

Artikel lesen

Schräger Wurf

Unter einem schrägen oder schiefen Wurf versteht man die Überlagerung (Superposition) einer gleichförmigen Bewegung mit bestimmter Anfangsgeschwindigkeit (Abwurfgeschwindigkeit) schräg nach oben und des freien Falls.
Die beiden Teilbewegungen ergeben eine resultierende (zusammengesetzte) Bewegung. Für diese resultierende Bewegung können Wege und Geschwindigkeiten rechnerisch oder zeichnerisch ermittelt werden. Dabei ist der vektorielle Charakter von Weg und Geschwindigkeit zu beachten.
Als Bahnkurve ergibt sich eine typische Wurfparabel.

Artikel lesen

Schweredruck in Flüssigkeiten

Den Druck in einer Flüssigkeit, der infolge der Gewichtskraft einer darüber liegenden Flüssigkeitssäule entsteht, nennt man Schweredruck.

Formelzeichen:p
Einheit:ein Pascal (1 Pa)

Er kann berechnet werden mit der Gleichung p = ρ ⋅ g ⋅ h .
Der Schweredruck ist ein spezieller Druck. Es gelten für ihn aber alle Aussagen, die für den Druck allgemein zutreffen.

Artikel lesen

Schwingende Saiten und Luftsäulen

Bei einer Reihe von Musikinstrumenten wird Schall erzeugt, indem man Saiten oder Luftsäulen zum Schwingen bringt. Beispiele für Saiteninstrumente sind Gitarren, Geigen, Bratschen, Klaviere oder Harfen. Schwingende Luftsäulen findet man z. B. bei Orgeln, Klarinetten, Saxofonen, Trompeten oder Posaunen.
Die Frequenz der Schwingungen und damit die Tonhöhe des entstehenden Schalls ist u. a. von der Länge der Saiten bzw. der Luftsäulen abhängig.

Artikel lesen

Mechanische Schwingungen im Überblick

Bei einer Reihe von periodischen Vorgängen bewegt sich ein Körper um eine Gleichgewichtslage (Ruhelage, Nulllage) hin und her. Beispiele dafür sind schwingende Saiten, die Schwingungen einer Stimmgabel, ein schwingendes Fadenpendel (Bild 1), die Schwingung eines Pkw auf unebener Fahrbahn, eine Schaukel, oder ein Federschwinger. Eine solche spezielle periodische Bewegung bezeichnet man als Schwingung und definiert:

Eine mechanische Schwingung ist eine zeitlich periodische Bewegung eines Körpers um eine Ruhelage.

Da sich bei mechanischen Schwingungen zeitlich periodisch z.B. der Abstand von der Gleichgewichtslage, die Geschwindigkeit oder die Beschleunigung des betreffenden Körpers ändern, kann man eine Schwingung auch allgemeiner charakterisieren:

Eine Schwingung ist eine zeitlich periodische Änderung physikalischer Größen.

Artikel lesen

Senkrechter Wurf

Unter einem senkrechten Wurf versteht man die Überlagerung (Superposition) einer gleichförmigen Bewegung mit der Anfangsgeschwindigkeit (Abwurfgeschwindigkeit) v 0 und des freien Falls.
Erfolgen beide Teilbewegungen in der gleichen Richtung, so spricht man vom senkrechten Wurf nach unten. Erfolgen beide Teilbewegungen in entgegengesetzter Richtung, so spricht man von einem Wurf nach oben.
Die beiden Teilbewegungen ergeben eine resultierende (zusammengesetzte) Bewegung. Für diese resultierende Bewegung können Wege und Geschwindigkeiten rechnerisch oder zeichnerisch ermittelt werden. Dabei ist der vektorielle Charakter von Weg und Geschwindigkeit zu beachten.

Artikel lesen

Strömende Flüssigkeiten und Gase

Eine Strömung ist die gerichtete Bewegung eines Gases oder einer Flüssigkeit gegenüber einem Körper. Beispiele dafür sind strömendes Wasser in einem Fluss, strömendes Öl in einer Pipeline, strömendes Gas in einem Gasrohr oder die gegenüber einem Auto strömende Luft. Strömungen können mithilfe von Stromlinienbildern als Modell dargestellt werden. Unterschieden werden glatte (laminare) Strömungen und verwirbelte (turbulente) Strömungen.
Besteht zwischen einem Körper und einer strömenden Flüssigkeit bzw. einem strömenden Gas eine Relativbewegung, so tritt ein Strömungswiderstand auf. Handelt es sich bei dem Stoff um Luft, so spricht man vom Luftwiderstand und von der Luftwiderstandskraft.

Artikel lesen

Tonhöhe und Lautstärke

Wie wir Schall empfinden, hängt in starkem Maße von der Tonhöhe und der Lautstärke ab. Beides sind keine physikalischen, sondern physiologische Größen. Die Tonhöhe wird durch die Frequenz (Schnelligkeit der Druckschwankungen) bestimmt. Je größer die Frequenz der Schwingungen ist, desto höher ist der Ton. Die Lautstärke wird durch die Amplitude der Schwingungen (Größe der Druckschwankungen) bestimmt. Je größer die Amplitude der Schwingungen ist, desto lauter ist der Ton. Die Lautstärke wird in der Einheit Phon (phon) angegeben und kann mit Schallpegelmessern bestimmt werden.

Artikel lesen

Trägheitskräfte

Trägheitskräfte, auch Scheinkräfte genannt, treten in beschleunigten Bezugssystemen als real wirkende Kräfte auf. Sie wirken stets entgegen der Beschleunigung. Das gilt bei einer geradlinigen Bewegung ebenso wie bei einer Kreisbewegung. Dort werden sie als Zentrifugalkräfte bezeichnet.
Auch ein mit der Erdoberfläche verbundenes Bezugssystem ist aufgrund der Rotation der Erde um ihre Achse ein beschleunigtes Bezugssystem. Demzufolge wirkt auf jeden Körper, der sich auf der Erdoberfläche befindet, eine Trägheitskraft.
Eine weitere spezielle Trägheitskraft, die auf bewegte Körper auf der Erdoberfläche und damit auch auf fließendes Wasser oder bewegte Luftmassen wirkt, ist die CORIOLIS-Kraft.

Artikel lesen

Trägheitsmomente

Bei einer geradlinigen Bewegung hängt die Änderung des Bewegungszustandes eines Körpers von der wirkenden Kraft und von der Masse des Körpers ab. Die analogen Größen bei der Rotation sind des Drehmoment und das Trägheitsmoment.

Das Trägheitsmoment gibt an, wie träge ein drehbar gelagerter Körper gegenüber der Änderung seines Bewegungszustandes ist.
Formelzeichen: J
Einheit: ein Kilogramm mal Quadratmeter ( 1   kg ⋅ m 2 )

Allgemein gilt für das Trägheitsmoment: J = ∑ i = 1 n m i ⋅ r i 2 oder J = ∫ r 2   d m

Artikel lesen

Überlagerung gleichförmiger Bewegungen

Setzt sich die Bewegung eines Körpers aus zwei gleichförmigen Teilbewegungen zusammen, so spricht man von einer Überlagerung oder Superposition gleichförmiger Bewegungen. Die Teilbewegungen können die gleiche Richtung oder die entgegengesetzte Richtung haben oder einen beliebigen Winkel zueinander bilden.
Die beiden Teilbewegungen ergeben eine resultierende Bewegung (zusammengesetzte Bewegung). Für diese resultierende Bewegung können Wege und Geschwindigkeiten rechnerisch oder zeichnerisch ermittelt werden. Dabei ist der vektorielle Charakter von Weg und Geschwindigkeit zu beachten.

Artikel lesen

Überlagerung gleichförmiger und gleichmäßig beschleunigter Bewegungen

Setzt sich die Bewegung eines Körpers aus einer gleichförmigen und einer gleichmäßig beschleunigten Bewegung zusammen, so spricht man von einer Überlagerung oder Superposition von Bewegungen. Die Teilbewegungen können die gleiche Richtung oder die entgegengesetzte Richtung haben oder einen beliebigen Winkel zueinander bilden.
Die beiden Teilbewegungen ergeben eine resultierende (zusammengesetzte) Bewegung. Für diese resultierende Bewegung können Wege und Geschwindigkeiten rechnerisch oder zeichnerisch ermittelt werden. Dabei ist der vektorielle Charakter von Weg und Geschwindigkeit zu beachten.

Artikel lesen

Parallelschaltung von Wechselstromwiderständen

Unter Wechselstromwiderständen versteht man ohmsche, induktive und kapazitive Widerstände. Für die Parallelschaltung solcher Widerstände gelten im Wechselstromkreis andere Gesetze als für Widerstände im Gleichstromkreis. Der Gesamtwiderstand Z, der auch als Scheinwiderstand bezeichnet wird, kann bei Parallelschaltung von Wechselstromwiderständen berechnet werden mit der Gleichung:

1 Z = 1 R 2 + ( 1 X C − 1 X L ) 2 oder 1 Z = 1 R 2 + ( ω ⋅ C − 1 ω ⋅ L ) 2

Artikel lesen

Reihenschaltung von Wechselstromwiderständen

Unter Wechselstromwiderständen versteht man ohmsche, induktive und kapazitive Widerstände. Für die Reihenschaltung solcher Widerstände gelten im Wechselstromkreis andere Gesetze als für Widerstände im Gleichstromkreis. Der Gesamtwiderstand Z, der auch als Scheinwiderstand bezeichnet wird, kann bei Reihenschaltung von Wechselstromwiderständen berechnet werden mit der Gleichung:

Z = R 2 + ( X L − X C ) 2 oder Z = R 2 + ( ω ⋅ L − 1 ω ⋅ C ) 2

Für die Spannungsverteilung gilt, dass die Summe der Teilspannungen größer ist als die Spannung der anliegenden Spannungsquelle.

Artikel lesen

Selbstinduktion und Induktivität

Eine stromdurchflossene Spule wird von einem Magnetfeld durchsetzt und ist auch von diesem Feld umgeben. Bei konstanter Stromstärke ist dieses Feld zeitlich konstant. Verändert sich die Stromstärke, so verändert sich auch die Stärke des Magnetfeldes, das von der Spule umschlossen wird. Damit wird nach dem Induktionsgesetz in der felderzeugenden Spule selbst eine Spannung induziert. Diese Erscheinung wird als Selbstinduktion, die entstehende Spannung als Selbstinduktionsspannung bezeichnet. Der Bau der Spule, der für den Betrag der Induktionsspannung eine erhebliche Rolle spielt, wird durch die Größe Induktivität charakterisiert.

Artikel lesen

Transformatoren

Transformatoren oder Umformer werden verwendet, um elektrische Energie eines Wechselstromes von einem Primärstromkreis auf einen Sekundärstromkreis zu übertragen. Bei dieser Übertragung kann man die Werte für die Spannungen und die Stromstärken verändern. Das Funktionsprinzip von Transformatoren beruht auf der elektromagnetischen Induktion, wobei die eine Spule als felderzeugende Spule und die andere als Induktionsspule dient.
Für die praktische Anwendung wesentlich ist die Anpassung eines Transformators an die jeweilige Belastung. In der Technik gibt es auch eine Reihe von speziellen Transformatoren, zu denen beispielsweise Netzgeräte oder Zündspulen gehören.

Artikel lesen

Wechselspannung und Wechselstrom

Während bei einer Gleichspannung immer die gleiche Polarität und damit bei einem Gleichstrom die gleiche Flussrichtung vorliegt, wird eine Spannung, deren Polarität sich periodisch ändert, als Wechselspannung bezeichnet. Entsprechend ändert sich die Flussrichtung des Wechselstromes periodisch. Spannung und Stromstärke müssen nicht unbedingt den zeitlichen Verlauf einer Sinusfunktion besitzen. Allerdings ist sinusförmige Wechselstrom technisch am weitesten verbreitet, da er bei der Stromgewinnung in Wechselstromgeneratoren entsteht. Er lässt sich auch mathematisch relativ einfach beschreiben.
Bei Wechselspannungen bzw. Wechselströmen gibt man in der Regel die Effektivwerte für Spannung und Stromstärke an. Sie unterscheiden sich von den mittleren Werten und von den Maximalwerten.

Artikel lesen

Ohmsche, induktive und kapazitive Widerstände im Wechselstromkreis

Unter einem Wechselstromkreis versteht man einen Stromkreis, in dem sich die Polarität der elektrischen Quelle periodisch so ändert, dass sich auch die Flussrichtung periodisch ändert. Wir beschränken uns auf die Betrachtung von sinusförmigem Wechselstrom. Wie im Gleichstromkreis bilden auch im Wechselstromkreis ohmsche Widerstände ein Hindernis für den Strom, also einen elektrischen Widerstand. Darüber hinaus verhalten sich im Wechselstromkreis auch Kondensatoren und Spulen wie elektrische Widerstände. Den Widerstand eines Kondensators bezeichnet man als kapazitiven Widerstand, den einer Spule als induktiven Widerstand. Alle drei Arten von Widerständen im Wechselstromkreis werden als Wechselstromwiderstände bezeichnet. Sie weisen jeweils Besonderheiten auf, die in dem Beitrag ausführlich dargestellt sind.

Artikel lesen

Innere Energie

Die innere Energie gibt an, wie groß die in einem abgeschlossenen System (Körper) gespeicherte Energie ist.
Formelzeichen: U
Einheit: ein Joule (1 J)
Sie ist die Gesamtenergie aller Teilchen (Atome, Moleküle) eines Körpers und setzt sich damit aus der Summe der Bewegungsenergien bei Translation, Rotation und Schwingungen, der potenziellen Energien und der Bindungsenergien zusammen.
Bei Gasen wird die innere Energie im Wesentlichen von den Bewegungsenergien der Teilchen bestimmt.

Artikel lesen

Energieverteilung bei Teilchen

Gegenstand der kinetischen Gastheorie ist die Betrachtung thermodynamischer Prozesse auf der Grundlage von Teilchengrößen, wie der Teilchenanzahl, ihrer räumlichen Verteilung und ihrer Geschwindigkeit. Von besonderer Bedeutung ist die Energieverteilung, die eng mit der Geschwindigkeitsverteilung zusammenhängt. Betrachtet man verschiedene Aggregatzustände und bezieht auch Moleküle in die Betrachtungen ein, so ist neben der kinetischen Energie auch die Rotationsenergie und die Schwingungsenergie mit zu beachten.

Artikel lesen

Die Entropie

Der Begriff Entropie wurde 1865 durch den deutschen Physiker RUDOLF CLAUSIUS (1822-1888) in die Physik eingeführt. Sie ist eine Größe, mit deren Hilfe man die Irreversibilität eines Vorganges kennzeichnen kann. Von praktischer Bedeutung ist nicht der absolute Betrag der Entropie S, sondern ihre Änderung, die man folgendermaßen kennzeichnen kann:

Δ S = k ⋅ ln   W oder Δ S = Q T k BOLTZMANN-Konstante W Wahrscheinlichkeit des Zustandes eines Systems Q Wärme T absolute Temperatur

Artikel lesen

Geschwindigkeitsverteilung von Teilchen

Gegenstand der kinetischen Gastheorie ist die Betrachtung thermodynamischer Prozesse auf der Grundlage von Teilchengrößen, wie der Teilchenanzahl, ihrer räumlichen Verteilung und ihrer Energie. Von besonderer Bedeutung ist die Geschwindigkeitsverteilung der Teilchen eines Gases, da die Geschwindigkeit eng mit der kinetischen Energie, dem Druck und auch mit der Temperatur verknüpft ist. Untersuchungen zeigen, dass zwischen der mittleren Geschwindigkeit, der wahrscheinlichsten Geschwindigkeit und der mittleren quadratischen Geschwindigkeit der Teilchen unterschieden werden muss.

Seitennummerierung

  • Previous Page
  • Seite 1
  • Seite 2
  • Seite 3
  • Seite 4
  • Aktuelle Seite 5
  • Seite 6
  • Next Page

140 Suchergebnisse

Fächer
  • Physik (140)
Klassen
  • 5. Klasse (1)
  • 6. Klasse (1)
  • 7. Klasse (1)
  • 8. Klasse (1)
  • 9. Klasse (1)
  • 10. Klasse (1)
  • Oberstufe/Abitur (139)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025